Sierra Pacific Industries Dry Kiln

Emissions Testing for Filterable and Condensable Particulates

Report Number: 13-2476

Prepared for:

Sierra Pacific Industries 14353 McFarland Road Mt. Vernon, WA 98273

Performed and Reported by:

Emission Technologies, Inc. 15609-D Peterson Road Burlington, WA 98233

Report Certification

The emission testing for this report was carried out under my direction and supervision. In addition, I have reviewed all analysis and test results, and certify that the test and report meet EPA requirements and that, to the best of my knowledge, this test report is authentic and accurate.

Date: 7-8-13 Signed:

Operations Manager, QSTI 2012-656 Robert Rusi

I have reviewed all analysis and test results, and certify that, to the best of my knowledge, this test report is authentic and accurate.

Signed: Date: 7-8-13

Quality Assurance Manager, QSTI 2012-654 Wendy Pounds

Reproducing portions of this test report may omit critical substantiating documentation or be taken out of context so due care must be exercised in this regard.

Test Date: <u>May 29- June 1, 2013</u>

Date Issued: July 8, 2013

Revision Log

No.	Revision Date	Revised Sections	Notes		Initials
				ter and the second s	

Emission Test Summary:

Source Name:	Sierra Pacific Industries
Test performed by:	Emission Technologies, Inc.
Emission/Process Unit:	Pilot Kiln
List Operational Parameters recorded during testing (e.g., Btu input, gallons loaded, steam production, % capacity, fuel feed rate, control device parameters, etc.):	Board feet dry, Final % moisture content
Regulation requiring test:	
Required frequency of test:	Engineering
Actual Test Date(s)	 May 29-June 1, 2013
Test Method(s):	US EPA Methods 1, 2, 3, 4, 5 & 202
Modifications (if any):	
Pollutant(s), units:	Total particulates; grains/dscf, lb/hr, lb/Mbf
Emission Factor	0.022 lb/Mbf for Douglas fir, and 0.051 lb/Mbf for hemlock
Average Emission/Concentration: (include averaging time, correction if applicable)	0.00029gr/dscf 0.00065 lb/hr 0.0197 lb/Mbf
In Compliance (Y/N)	

Sierra Pacific Industries

Contact:

Curt Adcock 14353 McFarland Road Mt. Vernon, WA 98273

Phone: (360) 424-7619 Fax (360) 428-6834 Email: <u>cadcock@spi-ind.com</u> David Brown, PE 19794 Riverside Ave Redding, CA 96049

(530) 378-8179 (530) 378-8139 <u>dbrown@spi-ind.com</u>

Northwest Clean Air Agency

Contact:

Erica Shuhler and Toby Mahar 1600 South Second Street Mt. Vernon, WA 98273-5202

Phone: (360) 428-1617 Fax: (360) 428-1620 Email: <u>Erica@nwcleanair.org</u> - <u>toby@nwcleanair.org</u>

Department of Ecology

Contact:

Gary Huitsing, P.E. Air Quality Program Washington Department of Ecology PO Box 47600 Olympia, WA 98504-7600

Phone: (360) 407-6314 Fax: (360) 407-7534 Email: ghui461@ecy.wa.gov

Emission Technologies, Inc.

Contact:

Robert Rusi, QSTI 15609-D Peterson Rd. Burlington, Washington 98233

Phone: (800) 507-9018 Phone: (360) 757-1210 Fax: (360) 757-1118 Email: <u>eti@stacktester.com</u>

Table of Contents

1.	REI	PORT TEXT	. 1
1	.1	Purpose	. 1
1	.2	Background	. 1
1	.3	Test Overview	.3
1	.4	Overview of the Sampling Methods	. 4
1	.5	Results	. 7
1	.6	As Found	. 7
1	.7	Process Overview	. 7
1	.8	Participants	. 8
2.	SUI	MMARY	.9
3.	ETI	FIELD TEST DATA	10
4.	LA	BORATORY DATA	11
5.	RA	W FIELD DATA SHEETS	12
5	.1	HFI Raw Data	12
5	.2	HFK Raw Data	19
6.	PRO	DCESS DATA	26
7.	QU	ALITY ASSURANCE/QUALITY CONTROL	34
7	.1	ETI Quality Assurance/Quality Control Document	16
7	.2	Hand Calculations	19
7	.3	Meter Calibration	53
7	.4	Temperature Sensor Calibrations	57
7	.5	Pitot Tube Calibration	50
7	.6	Nozzle Calibration	51
7	.7	Balance and Weights Calibrations/Certifications	53
7	.8	Chemical Certificates of Analysis	56

List of Tables

Table 1.1	Test Protocol	3
Table 1.2	Performance Test Results	7
Table 2.1	Method 5 Particulate Summary	9
Table 3.1	Flows & Moisture Field Data	
Table 4.1	PM Gravimetrics Data	11
14010 111		

List of Figures

Figure 1.1	Pitot Tube Manometer Assembly	4
Figure 1.2	EPA Method 5 Diagram	5
Figure 1.3	SPI Stack Diagram	8

1. **REPORT TEXT**

1.1 Purpose

Emission Technologies, Inc. (ETI) was contracted by Sierra Pacific Industries (SPI) to perform emissions tests on the exhaust stack of the pilot kiln located at the Chemco facility in Ferndale, Washington. SPI is using the pilot kiln to obtain emissions factors for particulate matter while drying hemlock lumber. The pilot kiln was used because all emissions from the unit could be vented out a single stack.

1.2 Background

The following excerpts are taken from a memorandum dated April 11, 2012 from Environ (on behalf of SPI) to NWCAA:

SPI operates a lumber manufacturing facility in Burlington, Washington that, from an air emissions perspective, primarily consists of a cogeneration unit, a sawmill and planer mill, and six double-track steam-heated lumber dry kilns. Air pollutant emissions attributable to the facility are governed by permits issued by the Washington Department of Ecology (Ecology) and NWCAA. The Prevention of Significant Deterioration (PSD) permit issued by Ecology (PSD 05-04, Amendment 1) limits the quantity of lumber dried in the kilns to 804 thousand board feet per day (Mbf/day) if only hemlock is dried, or 1,608 Mbf/day - a total day's load - if hemlock and other wood species are dried. The air permit application submitted on June 10, 2008 included PM emission rates for the kiln, which were calculated using the maximum expected kiln throughput and emission factors for the two principal wood species processed by the facility: hemlock and Douglas fir. Typically, emission factors for a proposed emission unit are obtained from source tests performed by stack testing companies or manufacturers on similar existing emission units. For some emission unit categories, multiple source tests have been compiled into databases, and representative emission factors have been calculated by the U.S. EPA or state agencies (e.g., U.S. EPA's AP- 42) using the database information. Steam-heated lumber dry kilns began receiving attention from an air pollution perspective approximately 15 or 20 years ago, and the majority of that interest has been focused on volatile organic compounds (VOCs) and hazardous air pollutants (HAPs), not PM. Source testing of in-use production kilns is extremely difficult, so most emission factor studies have been done in laboratories on scaled-down versions of production kilns. The few studies that have produced PM emission factors for kilns were done in the 1990s, and all

confirm that steam-heated kilns do not produce non-condensable (i.e., filterable) PM of any size. This is not surprising, because kilns heated by steam do not feature either of the primary mechanisms for producing filterable PM: fuel combustion or mechanical generation (e.g., cutting, grinding). Source tests conducted on kilns indicate that the PM emitted by kilns is comprised of VOCs that condense and coagulate to form small particles, the vast majority of which are less than 2.5 microns in diameter. This, in addition to a widely accepted understanding of the processes that generate PM2.5, is the basis for the assumption that all PM from kilns is condensable PM2.5. In fact, the PSD permit essentially equates PM10 and PM2.5 with respect to kiln emissions, in that the criterion for terminating the PM2.5 monitoring required by the permit is a kiln PM10 emission rate threshold. The only instances of agency-endorsed PM emission factors for steam-heated kilns that ENVIRON was been able to identify during the preparation of the PSD permit application were the emission factors provided in Oregon Department Environmental Quality (ODEQ) Forms AQEF02,2 AQGP-110,3 and AQGP-010.4 Among other things, these forms provide PM emission factors for both Douglas fir and hemlock lumber dried by a steam-heated kiln. Because there is some variability in the PM emission factor for hemlock within the forms, ENVIRON requested the source test results upon which the emission factors were based. ODEQ staff provided the results of the underlying tests, which were conducted using a 16-foot-long, laboratory-scale version of a Wellons production kiln5 in the Forest Research Lab at Oregon State University in Corvallis, Oregon. Two hemlock tests were conducted in November 1998, and two Douglas fir tests were conducted in December 1998. The tests, which used ODEQ Method 7 to measure condensable PM, resulted in emission factors of 0.022 lb/Mbf for Douglas fir, and 0.051 lb/Mbf for hemlock. These four laboratory source tests, conducted over 13 years ago in a laboratory, constitute the basis for the emission factors used to calculate PM emission rates for steam-heated kilns drying Douglas fir and hemlock in the PSD permit application (the "calculated kiln emissions rates"). SPI, with this test desires to use the results of the kiln testing as further specified with the intent that the data will support a decrease in the emission factor used for Hemlock during kiln drying operations. This emission factor change is ultimately intended to modify the PSD permit for the facility to allow increase in Hemlock throughput at the kiln based on the anticipated lower emission factors.

1.3 Test Overview

Testing was conducted from May 29-June 1, 2013 on the outlet stack of the pilot kiln. Environmental Protection Agency (EPA), Code of Federal Regulations, Title 40, Part 60 (40 CFR 60) Appendix A Methods 1, 2, 3, 4 and 5 were used to perform the filterable particulate matter (PM) test. Title 40, Part 60 (40 CFR 51) Appendix A Method 202 was used for condensable particulate matter. For Quality Assurance precision determination, ETI sampled the test kiln simultaneously using two Method 5/202 trains. Table 1.1 presents the test protocol used.

		Number of Runs	
Parameter	Test Method	(Simultaneous)	Run Time
Traverse Points	EPA 1	2	-
Stack Gas Velocity	EPA 2	2	53 hr
O ₂ and CO ₂	*EPA 3	2	53 hr
Moisture	EPA 4	2	53 hr
Filterable PM	EPA 5	2	53 hr
Condensable PM	EPA 202	2	53 hr

Table 1.1Test Protocol

*Molecular weight is assumed to be that of ambient air

The entire kiln was encapsulated in an enclosure made of new polyethylene sheeting. A sheet metal exhaust stack extended above the enclosure and had a single sample port for measuring the particulates. Two inlets allowed ambient air to enter the kiln on the back of the enclosure.

Due to the extremely low exhaust gas velocity, all particulates were assumed to be less than 2.5 microns. The velocity pressure was measured using an Air Data electronic micromanometer.

1.4 Overview of the Sampling Methods

EPA Method 1 – Sample and Velocity Traverses

EPA Method 1 was used to aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from the source. A measurement site where the effluent stream was flowing in a known direction was selected, and the cross-section of the stack was divided into a number of equal areas. A traverse point was then located within each of these equal areas. This method includes the procedure for cyclonic flow check.

EPA Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate

This method is applicable for the determination of the average velocity and volumetric flow rate of a gas stream. The average gas velocity in a stack was determined from the gas density and from measurement of the average velocity head with a Type S (Stausscheibe or reverse type) pitot tube.

Figure 1.1 Pitot Tube Manometer Assembly

EPA Method 4 - Moisture Content in Stack Gas

This method is applicable for the determination of the moisture content of stack gas. A sample of the gas stream was extracted at a constant rate and then condensed and metered using an EPA Method 5 sample train. The weight gain of moisture condensed was determined gravimetrically by measuring the weight change of the impingers.

EPA Method 5 - Determination of Filterable Particulate Matter

Particulate matter was withdrawn from the source and collected on a quartz fiber filter maintained at a temperature in the range of $248 \pm 25^{\circ}$ F ($120 \pm 14^{\circ}$ C). Particulate matter that was deposited on the nozzle, probe and front half of the filer holder were rinsed with acetone and collected in sample bottles. The acetone was then evaporated off at the laboratory and desiccated for 24 hours. The particulate mass from the rinse and filter were determined gravimetrically after removal of uncombined water. The impinger contents were weighed to determine moisture content of the exhaust stream.

Figure 1.2 EPA Method 5 Diagram

EPA Method 202 - Dry Impinger Method for Determining Condensable Particulate Matter

The condensable particulate matter (CPM), back half fraction, is the material that condenses after passing through the filter and was analyzed using Method 202 (OTM28). The method uses a Method 5 sampling train with the addition of a condenser, a water dropout impinger and a modified Greenburg Smith impinger (both dry) followed by a Teflon CPM filter. The impinger contents are immediately purged after the run for one hour with nitrogen to remove dissolved sulfur dioxide gases. The CPM filter is extracted with water and hexane. The impingers are

recovered, rinsed and the organic and aqueous fractions are separated using hexane. The organic and aqueous fractions are then taken to dryness and residues weighed. The total of both fractions represents the CPM.

1.5 Results

The results of the particulate emission tests are summarized below in Table 1.2 and presented in the Summary section of the report (Table 2.1). The units of reporting for the particulates are grains per dry standard cubic foot (gr/dscf), pounds per hour (lb/hr) and pounds per thousand board feet (lb/Mbf).

Unit	Parameter	Test Average	
Dry Kiln	PM _{2.5}	0.00029 gr/dscf	
Dry Kiln	PM _{2.5}	0.00065 lb/hr	
Dry Kiln	PM _{2.5}	0.0197 lb/Mbf	

Performance Test Results Table 1.2

The emission rates presented in the summaries are referenced to EPA standard conditions of 29.92 inches of mercury ("Hg) and 68 °F. The pollutant concentration (gr/dscf) multiplied by the stack gas velocity, a conversion factor and the cross-sectional area of the stack give the emission rate in pounds per hour.

1.6 As Found

During the drying process the impingers were changed out once and the silica gel impingers were changed out several times to keep from becoming saturated. The sample probe was positioned in the center of the exhaust stack throughout the test program. This provided the highest flow measurement throughout the test program.

The kiln was loaded with 2,267 board feet of 2"x10" Western Hemlock lumber from Sierra Pacific's Burlington sawmill. The kiln was operated for 69 hours and the boards were dried to 10.3 % moisture content with a standard deviation of 3.1%.

Process Overview 1.7

The Wellons Dry kiln is heated with steam from a 25MMBtu/hr boiler. The heating cycle for the unit is controlled by a computer that monitors wet bulb and dry bulb temperatures with the kiln.

There are two inlet vents and two outlet vents that maintain temperature within the kiln. A single fan circulates air flow within the kiln.

Figure 1.3 below presents the kiln sample arrangement (site photos in Section 7).

Figure 1.3 **SPI Stack Diagram**

1.8 **Participants**

- Mr. Robert Rusi, Project Manager, QSTI 2012-656
- Mr. Robert Wilson, Field Technician
- Mr. Dave Worgum, Field Technician, QSTI 2012-657
- Mr. Dave Wagner, Field Technician QSTI 2012-658
- Ms. Wendy Pounds, Quality Assurance Supervisor QSTI 2012-654 •

Mr. Don Lee served as Kiln Operator for SPI.

Mr. Curt Adcock served as Project Manager for SPI

Section: REPORT TEXT 8

2. SUMMARY

		22/7		05/00/12	
Client: Sierra Pacific	Bd-Ft Dried: 2267		Date: 05/29/13 -		
	Test Hours: 69			06/01/13	
Unit: Dry Kıln	Lbf (Mbf/hr): 0.0329		EIIJob	Number: 13-2476	
Filterable Catch		Run Number		-	
	HF I	HFK	Average		
mg	3.8	3.4	3.6		
gr/dscf	0.00004	0.00003	0.00004		
lb/hr	0.00010	0.00006	0.00008		
Condensable Catch		Run Number		_	
	HF I	HFK	Average		
Organic Fraction					
mg	6.4	11.1	8.8		
gr/dscf	0.00007	0.00009	0.00008		
lb/hr	0.00016	0.00020	0.00018		
Inorganic Fraction					
mg	15.0	21.0	18.0		
gr/dscf	0.00017	0.00018	0.00017		
lb/hr	0.00038	0.00038	0.00038		
Total Condensable					
gr/dscf	0.00025	0.00027	0.00026		
lb/hr	0.00054	0.00059	0.00056		
		Run Number			
Total Particulate	HFI	HFK	Average	-	
mg	25.2	35.5	30.4		
gr/scf	0.00028	0.00028	0.00028		
gr/dscf	0.00029	0.00030	0.00029		
lb/hr	0.00064	0.00065	0.00064		
lb/Mbf	0.0194	0.0198	0.0196		

Table 2.1Method 5 Particulate Summary

ETI FIELD TEST DATA 3.

Table 3.1 Flows & Moisture Field Data

C	lient: Sierra Pacific		Date: 05/29/13	- -
	Site: Dry Kiln	EII Jo	b Number: 13-2476	
	-	RI	in Number:	_
	Run Start Time:	nr i		
	Run Finish Time:			
θ	Sample Time, minutes	4140	4140	
	Stack Shape (Circle or Rectangle):		Circle	_
Vm	Dry Gas Meter Reading, dcfINITIAL:	428.600	665.649	
	FINAL:	1790.165	2549.625	_
Vm	Volume of dry gas sampled, dcf	1361.565	1883.976	
Y	Meter box calibration factor	0.992	0.999	
P _{bar}	Barometric pressure, inches Hg	29.65	29.65	
P _{static}	Stack static pressure, inches H ₂ O	0.00	0.00	
ΔH	Differential meter press, inches H ₂ O	0.3217	0.6555	
Tm	Meter temperature, degrees F	73.0	74.3	
Vlc	Volume of H ₂ O collected, ml	1562.0	2110.0	
% O ₂	Percent of oxygen in stack gas	20.90	20.90	
% CO ₂	Percent carbon dioxide in stack gas	0.10	0.10	
Cp	Type-S pitot tube coefficient	0.84	0.84	
$\sqrt{\Delta P}_{avg}$	Ave. square root of pitot readings, (inches H_2O) ^{1/2}	0.1045	0.1047	
Ts	Stack temperature, degrees F	104.1	104.1	
Ds	Stack diameter, feet - CIRCLE	1.00	1.00	
L_s, W_s	Stack dimensions, feet - RECTANGLE			
D _n	Nozzle diameter, inches	0.418	0.496	
$\mathbf{A}_{\mathbf{n}}$	Nozzle area, ft ²	0.000953	0.00134	
Calculate	ed Values:			
V _{m(std)}	Meter corrected volume,dscf	1326.986	1846.112	
V _{w(std)}	Volume of water vapor,dscf	73.648	99.487	
B _{ws}	Fraction of H ₂ O vapor	0.0526	0.05113	
B _{ws/sat}	Fraction of H ₂ O vapor at saturated conditions	0.0729	0.07288	
% N2	Percent nitrogen in stack gas	79.00	79.00	
$\mathbf{M}_{\mathbf{d}}$	Dry molecular weight of stack gas, lb/lb-mole	28.85	28.85	
$\mathbf{M}_{\mathbf{w}}$	Wet molecular weight of stack gas, lb/lb-mole	28.28	28.30	
$\mathbf{A}_{\mathbf{d}}$	Cross sectional area of stack, ft ²	0.785	0.785	
P _s	Absolute stack gas pressure, inches Hg	29.65	29.65	
V _s	Average stack gas velocity, ft/sec	6.15	6.17	
Q _{std}	Average stack volumetric flowrate, wscfm	269.03	269.47	
Qstd	Average stack volumetric flowrate, dscfm	254.89	255.70	
I	Percent isokinetic sampling	103.7	102.1	

4. LABORATORY DATA

Table 4.1 PM Gravimetrics D

Client: Sierra Pacific

Date: 05/29/13 -06/01/13

Site: Dry Kiln

ETI Job Number: 13-2476

PARTICULATE LABORATORY DATA:

FRONT HALF OF TRAIN -	R	Run Number:	
	HFI	HFK	
Probe/Nozzle Wash Residue Wt.			
Final weight, g:	66.9431	67.2857	
Tare weight, g:	66.9394	67.2829	
Blank acetone weight, g	0.0001	0.0001	
Weight gain, g:	0.0036	0.0027	
<u>Filter Wt.</u>			
Final weight, g:	0.3885	0.3084	
Tare weight, g:	0.3883	0.3077	
– Weight gain, g:	0.0002	0.0007	

TOTAL FRONT HALF PARTICULATE, g: 0.0038

0.0034

BACK HALF OF TRAIN -	R	un Number :	Field
DACK HALF OF TRAIL	HFI	HFK	Blank
Inorganic:			
Final weight, g:	2.0073	2.0173	2.0094
Tare weight, g:	1.9999	2.0052	2.0073
Weight gain, g:	0.0074	0.0121	0.0021
<u>Organic:</u>			
Final weight, g:	2.0244	2.0392	2.0125
Tare weight, g:	2.0084	2.0172	2.0104
Weight gain, g:	0.0160	0.0220	0.0021
Blank Correction, g:	0.0020		
TOTAL BACK HALF PARTICULATE, g:	0.0214	0.0321	0.0042
=			
TOTAL PARTICULATE, g:	0.0252	0.0355	

Section: LABORATORY DATA 11

5. RAW FIELD DATA SHEETS

5.1 HFI Raw Data

						7	Nomogra	hh						
	P	r 29.65		%02	20.90		ΔPare	0.00661		$D_{i,n}$	1.00		ບໍ	0.84
	Patri	tie 0.00		%c0;	0.10		\∆P 	0.0808		'n	0.418		٨	0.992
	ΔH	8 1.83	-	%N3	79		'n	0.0400		Υ,	0.000953		ď,	29.6500
	ð			M	28.8520		М,	28.4179					P.,	29.7846
Tir	ne 0	Vasian	Vacual	V.	T_{min}	$T_{m ent}$	ΔP	Τ,	$\sqrt{\Delta P}_{me}$	ΔH	V _{n(sil)}	^	I	Calc. D ₀
5/29/13 9:27 0	2	428.600	431,852	3,252	68.0	68.0	0.0043	68.00	0.07	0.13369	3.198	3.73	105.2	0.000
5/29/13 9:42 15	5	431.852	434.743	2,891	63.0	63.0	0,0040	21.00	0.06	0.12248	2,870	3.61	98.2	0.000
5/29/13 9:57 30	15	434.743	438.176	3,433	65.0	64.0	0,0059	74,00	0.08	0.18017	3.396	4.39	95.9	0,000
\$/29/13 10:12 45	5	438.176	442.180	4,004	66.0	65.0	0.0066	75.00	0.08	0.20155	3.953	4.65	105.7	0.000
5/29/13 10:27 60	15	442.180	445.838	3.658	68.0	66.0	0.0057	77.00	0.08	0.17391	3.598	4.33	103.7	0.000
5/29/13 10:42 75	5	445.838	449.927	4.089	69.0	68.0	0.0070	75.00	0.08	0.21498	4.014	4.79	104.2	0.000
5/29/13 10:57 90	51	449.927	454.016	4.089	70.0	0'69	0.0074	76.00	0.09	0.22727	4.007	4.93	101.2	0.000
5/29/13 11:12 10	5	454,016	458.119	4.103	69,0	0'69	0.0075	78.00	0.09	0.22927	4.028	4.97	101.3	0.000
5/29/13 11:27 12	0 15	458.119	462.662	4,543	68.0	68.0	0.0082	81.00	0.09	0.24881	4.469	5.21	107.8	0.000
5/29/13 11:42 13	5 15	462.662	466.918	4.256	69.0	68.0	0.0089	\$2.00	0.09	0.26980	4.179	5.43	96.8	0.000
s/29/13 11:57 15	0 15	466.918	470.426	3.508	70.0	69.0	0,0064	84.00	0.08	0.19367	3.437	4.62	94.1	0.000
5/29/13 12:12 16	5 15	470.426	474,417	166.5	68.0	69.0	0.0074	86.00	0.09	0.22269	3.926	4.97	100.1	0.000
5/29/13 12:27 18	0 15	474,417	478.800	4.383	68.0	68.0	0.0090	89.00	0.09	0.26910	4,312	5.50	100.0	0.000
5/29/13 12:42 19.	5 15	478.800	483.407	4.607	69.0	68.0	0,0090	91.00	0.09	0.26838	4.523	5.51	105.1	0.000
5/29/13 12:57 21	0 15	483,407	488.332	4.925	70.0	68.0	0.0100	92.00	0.10	0.29794	4.827	5.81	106.5	0.000
5/29/13 13:12 22	5 15	488,332	492.929	4.597	69.0	68.0	0.0092	95,00	0.10	0.27237	4,514	5.59	104.1	0.000
5/29/15 13:27 24	0 15	492.929	497.200	4.271	69.0	68.0	0.0092	94,00	0.10	0.27286	4.193	5.59	96.6	0.000
5/29/13 13:42 25	5 15	497,200	501.900	4.700	69.0	68.0	0.0095	98,00.	0,10	0.27974	4.615	5.70	105.0	0.000
5/29/13 13:57 27	0 15	501.9	506.571	4.671	89	89	0.0098	001	0.10	0.28727	4.595	5.80	103.1	0.000
5/29/13 14:12 28	5	506.571	211.300	4,729	67	67	0.0104	6	0.10	0.30266	4.66[5.99	101.8	0.000
5/29/13 14:27 30	0	511.5	516.539.	5.239	63	61	0.0119	2 5	0	0.34569	5.164	6.41	105.6	0.000
10 76051 01/06/2		29105	005 965	4 940	s 3	3.5	01100	011	0.10	0.31649	4.860	6.19	103.9	0.000
5/29/13 15:12 34	5	526.59	531.596	5.006	2	67	0,0111		0.11	0.31885	4.906	6.23	104.6	0.000
5/29/13 15:27 36	0	531.596	536.361	4.765	71	89	0.0107	114	0.10	0.30687	4.661	6.13	101.4	0.000
5/29/13 15:42 37.	5	536.361	541.500	5.139	5	020	0.0120	113	0.11	0.34573	5.018	6.49	102.9	0.000
5/29/13 15:57 39	0	541.5	546.650	5.150	۲: ۱	F I	0.0112	107	0.11	0.32671	5.019	6.23	106.0	0.000
5/29/13 16:12 40	5	546.65	551.780	5.130	5	5	0.0112	-	0.11	0.32298	5.009	6.27	106.4	0.000
5/29/13 16/27 42	5	551.78	556.930	5.150	Ľ,	F	0.0122	1	0.11	0.35121	5,029	6.55	102.4	0.000

5 Section: Raw Field Data Sheets

Calc. D	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	103.7	106.0	104.7	106.3	103.6	104.0	106.3	105.3	105.1	102.3	104.9	104.7	106.6	103.9	101.6	101.4	103.1	103.0	105.6	102.0	107.6	105.4	105.6	105.7	106.2	101.2	100.5	98.8	105.2	105.3	106.9	105.4	104.8	102.1	102.7	105.1	105.7	106.3	104.4	106.5	105.1	104.7
Ň	6.35	6.24	6.36	6.19	5.90	6.16	5.89	5.89	5.85	6.11	6.10	5.95	5.74	6.06	9,11	5.91	6.17	6.14	5.94	6.33	6.25	6.35	6.03	5.97	5.92	6.06	6.53	6.34	7.07	6.61	6.36	6.69	6.35	6.48	6.45	6.48	6.42	6.39	6.50	6.47	6.55	6.39
Variation	4.951	4.970	5.029	4,980	4.628	4.853	4.756	4.717	4.687	4.767	4.892	4.775	4.697	4.834	4.776	4.610	4.883	4.863	4.825	4.971	5.175	5,156	4,941	4.853	4.823	4.706	5,029	4.801	5.687	5.332	5.185	5.402	5.087	5.068	5.078	5.215	5.205	5.215	5.205	5.293	5.283	5.137
HΔ	0.33222	0.32040	0.33691	0.31945	0.29041	0.31710	0.29198	0.29249	0.29008	0.31731	0.31758	0.30341	0.28330	0.31576	0.32223	0.30154	0.32787	0.32519	0.30478	0.34650	0.33762	0.34947	0.31928	0.30688	0.30044	0.31517	0.36390	0.34207	0.42317	0.37236	0.34182	0.38043	0.34210	0.35803	0.35577	0.35905	0.35379	0.35084	0.36297	0.36002	0.36888	0.35117
LdV,	0.11	0.11	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.11	0.10	0.10	0,11	0.[]	0.11	0.10	0.10	0.10	0.10	0.11	0.11	0.12	0.11	0.11	0.11	0.11	0,11	0.11	0.11	0.1	0.1	0.11	0.11	0.1	0.11
Ĩ.	2	£11	110	109	109	108	107	106	- 105	2	103	102	101	101	8	001	101-	001	8	6	66	66	100	001	101	101	102	102	- 103	102	10	6	103	10	102	5	101	101	101	101	- [0]	10
٩Þ	0.0115	0.0111	0.0116	0110/0	0.0100	0.0109	0.0100	0.0100	0.0099	0.0108	0.0108	0.0103	0,0096	0.0107	6010'0	0.0102	0.0111	0.0110	0.0103	0.0117	0.0114	0.0118	0.0108	0.0104	0.0102	0.0107	0.0124	0.0117	0.0145	0.0127	0.0117	0.0130	0.0117	0,0122	0.0121	0.0122	0.0120	0.0119	0.0123	0.0122	0.0125	0.0119
T	12	12	72	L L	1	5	5	Ę,	Ľ,	Ę,	5	5	22	ť,	F.	12	F.	5	5	2	۲! ۲	[2	, 13	Ē	12	11	12	69	68	69	69	69	69	69	22	-1	17	7	с. Сі	Ľ,	22	Ľ.
T _{wie}	5	Ę	52	ť.	72	5	73	5	73	7	73	52	5	£	13	p	7	73	74	53	£Ľ.	5	73	77	22	5	20	68	69	F	12	69	2	5	FC	5	5	52	52	73	52	73
۲.	5:070	5.100	5,160	5.100	4,740	4.970	4,880	4,840.	4,810	4,900	5.020	4.900	4,820	4.960	4.900	4.730	5.020	4.990	4.960	5.100	5.310	5,290	5.070	4,970	4,940	4.820	5.130	4.880	5.790	5,450	5,300	5.500	5.190	5.190	5,210	5.350	5.340	5.350	5.340	5.430	5,420	5.270
V _{m out}	562.000	567.100	572.260	577.360	582.100	587.070	591.950	596.790	601.600	606.500	611.520	616.420	621.240	626.200	631.100	635.830	640.850	645.840	650.800	655.900	661.210	666.500	671.570	676.540	681.480	686,300.	691,430	696.310	702.100	707.550	712.850	718.350	723.540	728.730	733.940	739.290	744.630	749.980	755.320	760.750	766.170	771.440
Vaniar	556.93	562	567.1	572.26	577.36	582.1	587.07	591.95	596.79	601.6	606.5	611.52	616.42	621.24	626.2	631.1	635.83	640.85	645.84	650.8	635.9	661.21	666.5	671.57	676.54	681.48	686.3	691.43	696.31	702.1	707.55	712.85	718.35	723.54	728.73	733.94	739.29	744.63	749.98	755.32	760.75	766.17
Φ	15	2	5	2	5	2	5	2	ŝ	<u>5</u>	2	2	2	5	\$	'n	15	5	15	5	2	5	5	ŝ	5	2	2	<u>0</u>	5	<u>2</u>	5	5	15	15	5	2	Ś	<u>v</u>	2	3	5	15
Time	435	450	465	480	495	510	\$25	540	555	570	585	600	615	630	645	660	675	690	705	720	735	750	765	780	795	810	825	840	855	870	585	006	915	930	945	960	975	066	1005	020	1035	1050
	5/29/13 16:42	5/29/13 16:57	5/29/13 17:12	5/29/13 17:27	5/29/13 17:42	5/29/13 17:57	5/29/13 18:12	5/29/13 18:27	5/29/13 18:42	5/29/13 18:57	5/29/13 19:12	5/29/13 19:27	5/29/13 19:42	5/29/13 19:57	5/29/13 20:12	5/29/13 20:27	5/29/13 20:42	5/29/13 20:57	5/29/13 21:12	5/29/13 21:27	5/29/13 21:42	5/29/13 21:57	5/29/13 22:12	5/29/13 22:27	5/29/13 22:42	5/29/13 22:57	5/29/13 23:12	5/29/13 23:27	5/29/13 23:42	5/29/13 23:57	5/30/13 0:12	5/30/13 0:27	5/30/13 0:42	5/30/13 0:57	5/30/13 1:12	5/30/13 1:27	5/30/13 1:42	5/30/13 1:57	5/30/13 2:12	5/30/13 2:27	5/30/13 2:42	5/30/13 2:57

6 et et et	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	104.9	106.7	104.3	103.8	104.7	102.4	106.0	101.7	104.7	104.8	106.0	105.9	105.9	101.4	103.3	104.9	103.4	101.9	98.3	101.7	109.3	102.2	102.0	100.5	105.2	102.2	100.6	111.0	107.9	113.0	104.9	1.03.1	7.66	108.6	98.9	102.3	100.6	1.7.1	99.3	102.7	100.2	100.8
>	626	6.47	6.42	6.28	6.33	6.25	6.43	6.41	6,41	6,46	6.37	6.22	6.38	6.39	6.49	6.14	6.28	6.26	6.17	6.32	6.26	6.13	6.25	6.21	6.25	6.33	6.37	6.12	6.17	6.20	6.46	6.36	6.37	6.05	6.39	6.47	6.35	6.06	6.29	6.35	6.59	6.38
2	5.039	5.302	5.137	5.010	5.097	4.922	5.254	5.020	5.166	5.215	5.215	5.068	5.205	4.981	5.156	4.951	4.990	4.893	4.658	4.921	5.044	4.785	4,864	4.776	5.010	4.932	4.873	5.165	5.068	5.38]	5.176	4.995	4.830	4.971	4.767	4.961	4.806	4.893	4.700	4.899	4.967	4.826
AH	0.33642	0.36002	0.35412	0.33997	0.34588	0.33702	0.35835	0.35539	0.35539	0.36131	0.35306	0.33406	0.35243	0.35180	0.36362	0.32489	0.33933	0.33610	0.32725	0.34107	0.33519	0.31935	0.33200	0.32903	0.33110	0.33989	0.34222	0.31589	0.32174	0.33017	0.35417	0.34250	0.34254	0.30579	0.33954	0.34386	0.33378	0.30529	0.32797	0.33351	0.35961	0.33582
Ŀ	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	11.0	0.11	0.11	0.11	0.11	0.10	0.11	0.11	0.11	0.11	0.0	0.10	0.11	0.11	0.11	0.11	0.11	0.10	0.10	0.11	0.11	0.11	0.11	0.10	0.11	0.11	0.11	0.10	11.0	0.11	0.11	0.11
F	101	101	101	001	001	001	66	66	66	66	98	100	66	001	001	001	8	101	101	50	.102	104	101	501.	-105	105	106	901	901	001	- HOI	105	106	601	Ξ	± ≓	<u>-1</u>	Ξ	=	Ē	13	411
ΔÞ	0.0114	0.0122	0.0120	0.0115	0.0117	0,0114	0.0121	0.0120	0.0120	0.0122	0.0119	0.0113	0.0119	0.0119	0.0123	01100	0.0115	0.0114	0.0111	0.0116	+110'0	0.0109	0.0113	0.0112	0.0113	0.0116	2110/0	0.0108	0.0110.0	0.0112	0.0121	0.0117	0.0117	0.0105	0.0117	0.0119	0.0115	0.0105	0.0113	0.0115	0.0124	0.0116
F	72	ť.	- 72	52	52	ť.	22,	Ľ,	5	72	Ľ.	22	F.	72	51	F!	12	F	12	Ē	71	F	Ľ,	E	52	۲ ۲	Ľ,	F!	5	1-	2 2 2	71	5	72	5	73	ľ.	73	5	7	7	4
F	- -	73	73	5	5	5	73	5	5	73	Ľ	Ľ	R	ß	5	ť,	5	£	5	5	ť:	22	74	F?	5	5	Ę,	٤Ľ	57	7	52	5	Ż	74	7	74	75	75	22	75	75	75
>	5.170.	5.440	5.270	5.140	5.230	5.050	5.390	5.150	5.300	5.350	5.350	5.200	5.340	5.110	5.290	5.070	5.110	5.020	4.770	5.040	5.370	4.900	5,000	4,900	5.140	5.060	5.000	5.300	5.200	5.500	5.300	5:125	4,965	5.110	4,900	5.100	4.950	5.040	4.840	5,045	5.115	4.970
	776.610	782.050	787.320	792.460	797.690	802.740	808.130	813.280	818.580	823.930	829.280	834.480	839.820	844.930	850.220	855.290	860.400	865,420	870.190	875.230	880.600	885.500	890.500	895,400	900.540	905.600	910.600	915.900	921.100	926,600	931,900	937,025	941.990	947.100	952.000	957.100	962.050	967.090	026.179	976.975	982.090	987.060
>	771.44	776.61	782.05	787.32	792.46	797.69	802.74	808.13	813.28	818.58	823.93	829.28	834.48	\$39.82	844.93	850.22	855.29	860.4	865.42	870.19	875.23	880.6	885.5	890.5	895.4	900.54	905.6	9'016	915.9	921.1	926.6	931.9	937.025	941.99	947.1	952	957.1	962.05	907.09	971.93	976.975	982.09
θ	2	51	15	5	5	5	5	ŝ	ñ	2	5	12	15	15	5	15	15	15	2	5	15	5	15	15	5	5	2	5	2	5	2	15	15	12	5	5	15	5	5	5	2	5
Time	5/30/13 3:12 1065	5/30/13 3:27 1080	5/30/13 3:42 1095	5/30/13 3:57 1110	5/30/13 4:12 1125	5/30/13 4:27 11:40	5/30/13 4:42 1155	5/30/13 4:57 1170	5/30/13 5:12 1185	5/30/13 5:27 1200	5/30/13 5:42 1215	5/30/13 5:57 1230	5/30/13 6:12 1245	5/30/13 6:27 1260	5/30/13 6:42 1275	5/30/13 6:57 1290	5/30/13 7:12 1305	5/30/13 7:27 1320	5/30/13 7:42 1335	5/30/13 7:57 1350	\$/30/13 8:12 1365	5/30/13 8:27 1380	5/30/13 8:42 1395	5/30/13 8:57 1410	5/30/13 9:12 1425	5/30/13 9:27 1440	5/30/13 9:42 1455	5/30/13 9:57 1470	5/30/13 10:12 1485	5/30/13 10:27 1500	5/30/13 10:42 1515	5/30/13 10:57 1530	5/30/13 11:12 1545	5/30/13 11:27 1560	5/30/13 11:42 1575	5/30/13 11:57 1590	5/30/13 12:12 1605	5/30/13 12:27 1620	5/30/13 12:42 1635	5/30/13 12:57 1650	5/30/13 13:12 1665	5/30/13 13:27 1680

_				_			_		_	_	-		_	_	_	_	_	_	_			-	-									_		_			_	_		_	-	And State
Calc, D,	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	1.101	101.8	100.8	106.5	101.8	101.3	103.7	100.0	102.1	100.6	102.9	107.2	0.0	102.9	105.0	99.4	100.6	102.7	101.9	101.4	103.2	103.1	104.0	103.1	104.3	102.7	102.3	101.9	104.0	101.8	102.2	98.3	101.6	102.6	103.1	103.2	103.7	105.4	104.6	102.9	104.2	102.9
Υ,	6.55	6.39	6.51	6.28	6.47	6.46	6.41	6.51	6.47	6.63	6.48	6.5]	6.42	6.42	6.05	6.63	6.25	6,11	6.46	6.45	6.32	6.35	6.26	6.38	6.24	6.45	6.39	6.41	6.41	6,46	1	÷.	6.15	6.07	6.39	5.95	6.3]	6.25	6.28	6.00	5.94	6,11
Variation	4.967	4,869	4.895	5.000	4.933	4.875	4.943	4.818	4.904	4,952	4.894	5.117	0.000	4.856	4.757	4.943	4.749	4.740	5.031	4.973	5.089	4.924	4.943	4.982	4.934	5.031	4.982	4.982	5.088	5,021	5.020	4.641	4.787	4.767	5.059	4.708	5.030	5.069	5.049	4.747	4.766	4.835
ЧΥ	0.35319	0.33524	0.34559	0.32312	0.34423	0.33956	0.33386	0.34072	0.33871	0.35560	0.33183	0.33467	0.32702	0.32702	0.30084	0.36255	0.32743	0.31282	0.35848	0.35363	0.35763	0.33534	0.33241	0.34357	0.32889	0.35301	0.34803	0.35098	0.35127	0.35717	0.35356	0.32641	0.32525	0.31638	0.35183	0.30453	0.34357	0.33857	0.34093	0.31099	0.30561	0.32284
-∆P	0.11	0.11	11.0	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.11	0.11	0.10	0.11	0.11	0.11	0.12	0.11	0.11	. 1170	0.11	0.11	0.11	0.11	0.11	0.1	0.10	0.10	0.10	0.11	0.10	0.1	0,11	0.11	0.10	0.10	0.10
Ĕ	4	511	117	911	115	118	611	122	120	120	127.	127	126	126	115	114	110	110	103	901	601	<u>-</u>	- 107 -	108	108	107	105	105	3	104	5	3	8	102	0	101	001	66	001	100	66	001
ΔP	0.0122	9110'0	0.0120	0.0112	0.0119	0.0118	0.0116	0.0119	0.0118	0.0124	0.0117	0.0118	0.0115	0.0115	0.0104	0.0125	0.0112	0.0107	0.0121	0.0120	0.0122	0,0115	0,0113	0.0117	0.0112	0.0120	0.0118	6110'0	0.0119	0.0121	0.0120	0110.0	0.0110	0.0107	0.0119	0.0103	0.0116	0.0114	0.0115	0.0105	0.0103	0.0109
Tuiout	4	74	74	4	74	7	75	75	75	75	22	- 12	75	75	75	57.	94	75	76	76	76	76	76	76	92	- 76	75	75	33	5	7	74	7	ž	5	5	13	f	5	R	Ę,	73
T _{n io}	75	75	75	75	26	76	11	F	92	75	76	76	77	5	75	76	76	11	77	77	77	77	77	77	11	11	Ľ	11	76	76	21	21	22	75	74	74	74	75	75	74	74	77
Vn	5,115.	5.014	5.041	5.150	5.090	5.030	5:110.	4.980	5.060	5:100	5,050	5.280	0.000	5.020	4.900	5.100	4.900	4.900	5.200	5,140	3.260	5.090	5.110	5.150	5,100.	5.200	5,150	5.150	5.250	5.180	5,170	4.780	4.930	4.910	5.200	4.840	5.170	5.220	5.200	4.880	4.900	4.970
Vned	992.175	997.189	1002.230	1007.380	1012.470	1017.500	1022.610	1027.590	1032,650	1037.750	1042,800	1048.080	1048,080	1053.100	1058,000	1063.100	1068.000	1072.900	1078.100	1083.240	1088.500	1093.590	1098.700	1103.850	1108.950	1114.150	1119.300	1124.450	1129.700	1134.880	1140.050	144.830	[49.760	1154.670	1159.870	1164.710	1169.880	1175.100	1180.300	1185.180	1190,080	1195.050
Vnsiari	987.06	992.175	997.189	1002.23	1007.38	1012.47	1017.5	1022.61	1027.59	1032.65	1037.75	1042.8	1048.08	1048.08	1053.1	1058	1063.1	1068	1072.9	1078.3	1083.24	1088.5	1093,59	1098.7	1103.85	1108.95	114.15	5.6111	[124.45	1129.7	1134.88	50.0511	1144,83	1149.76	1154.67	1159.87	1164.71	1169.88	1175.1	1180.3	1185.18	1190.08
θ	51	5	15	2	2	2	2	2	15	2	15	5	2	15	5	2	ŝ	5	5	5	5	5	2	2	15	3	2	15	3	ŝ	<u>e</u> :	5	2	5	15	15	5	5	2	5	5	5
Time	5/30/13 13:42 1695	5/30/13 13:57 1710	5/30/13 14:12 1725	5/30/13 14:27 1740	5/30/13 14:42 1755	5/30/13 14:57 1770	5/30/13 15:12 1785	5/30/13 15:27 1800	5/30/13 15:42 1815	5/30/13 15:57 1830	5/30/13 16:12 1845	5/30/13 16:27 1860	5/30/13 16:42 1875	5/30/13 16:57 1890	5/30/13 17:12 1905	5/30/13 17/27 1920	5/30/13 17:42 1935	5/30/13 17:57 1950	5/30/13 18:12 1965	5/30/13 18:27 1980	2/30/13 18'42 1995	5/30/13 18:57 2010	5/30/13 19:12 2025	5/30/13 19:27 2040	5/30/13 19:42 2055	5/30/13 19:57 2070	5/30/13 20:12 2085	5/30/13 20:27 2100	5/30/13 20:42 2115	5/30/13 20:57 2130	5/30/13 21:12 2145	5/30/13 21:27 2160	5/30/13 21:42 2175	5/30/13 21:57 2190	5/30/13 22:12 2205	5/30/13 22:27 2220	5/30/13 22:42 2235	5/30/13 22:57 2250	5/30/13 23:12 2265	5/30/13 23:27 2280	5/30/13 23:42 2295	5/30/13 23:57 2310

Cale, D,	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	105.5	106.2	8.99	105.5	105.8	106.5	103.0	105.3	102.0	9'66	102.1	105.8	105.1	105.0	102.8	105.7	102.7	104.5	101.7	104.3	1.101	102.1	102.3	103.4	101.7	100.4	99.8	101.2	105.7	101.4	108.7	6,99	94.8	100.5	94.2	97.3	5,72	102.0	105.9	101.8	102.7	101.3
'n.	6.00	6.03	6.00	6.11	6.05	6.05	5.99	6.02	5.99	5.99	6.06	5.88	16.2	6.11	6.13	5.79	5.79	5.82	6.11	5.70	6.1]	5.94	5.76	5.70	5.82	5.99	5.93	5,90	5.70	5.67	5.57	5.90	6.02	5.93	5.80	5.61	6.03	6.01	6.15	6.16	6.05	6.26
Vului	4.932	4.922	4.601	4.961	4.932	4.961	4.757	4.883	4.708	4.600	4,755	4.784	4.784	4.941	4.863	4.716	4.579	4.687	4.785	4.579	4,755	4.667	4.540	4.540	4.558	4.637	4.568	4.607	4.646	4.431	4.676	4.549	4.402	4.598	4.198	4.206	4,500	4.696	4.989	4.794	4.744	4.818
НΔ	0.31692	0.31395	0.31070	0.32281	0.31719	0.31719	0.31126	0.31422	0.31126	0.31067	0.31573	0.29774	0.30123	0.32190	0.32574	0.28969	0.28969	0.29264	0.32220	0.28082	0.52220	0.30447	0.28673	0.28082	0.29209	0.31035	0.30444	0.30148	0.28079	0.27784	0.26897	0.30148	0.31331	0.30444	0.28890	0.27144	0.31163	0.30814	0.32282	0.32224	7660£.0	0.32901
Ş	0.10	0.10	0.10	01.0	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0,10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.11
г Г	001	100	100	66	66	66	66	66	66	66	00	8	66	56	86	ŝ	6	66	66	66	5	66	66	66	66	-86	98	98	98	36	- 98	98	98	98	001	66	101	102	103	103	₫	101
ΔP	0.0107	0.0106	0.0105	0.0109	0.0107	2010.0	0.0105	0.0106	0.0105	0.0105	0.0107	0.0101	0.0102	0.0109	0.0110.0	0.0098	0.0098	0.0099	0.0109	0.0095	6010.0	0.0103	0.0097	0.0095	0.0099	0.0105	0.0103	0.0102	0.0095	0.0094	0,0091	0.0102	0.0106	0.0103	0.0098	0.0092	0.0106	0.0105	0.0110	0.0110	0.0106	0.0113
T _{31 out}	73	5	72	F.1	12	F.	F7	12	Ę	12	ň	2	۶	02	F	Ē	F	1	[]	Ē	5	F	1	11	02	02	02	01	2	2	20	2	02	70	70	20	02	02	20	2 02	٩	71
T _{n li}	74	77	74	5	74	77	74	7	74	R	¢,	ť,	Ľ1	Ľ,	Ę1	Ę	5	5	5	72	77.	5	22	<u>1</u>	5	12	12	12	12	۲.	F	F	F	11	Ľ,	2	17	[2	5	F	12	71
V _{II}	5.070	5.060	4.730.	5.090	5.070	5.100	4:890	5.020	4.840	4.720	4.870	4.900	4,900	5,060	4.980	4.830	4,690	4.800	4,900	4,690	4,870	4.780	4,650	4.650	4.660	4.740	4.670	4.710	4.750	4.530	4.780	4.650	4.500	4.700	4.300	4.300	4.600	4,800	5.100	4.900	4,850	4.925
V _{n cel}	1200.120	1205.180	1209.910	1215.000	1220.070	1225.170	1230.060	1235.080	1239.920	1244.640	1249.510	1254.410	1259.310	1264.370	1269.350	1274.180	1278.870	1283.670	1288.570	1293.260	051.8621	1302.910	1307.560	1312.210	1316.870	1321.610	1326.280	1330.990	1335.740	1340.270	1345.050	1349.700	1354,200	1358.900	1363.200	1367.500	1372.100	1376.900	1382.000	1386.900	1391.750	1396.675
Vmsart	1195.05	1200.12	1205.18	1209.91	1215	1220.07	1225.17	1230.06	1235.08	1239.92	1244.64	1249.51	1254.41	1259.31	1264.37	1269.35	1274.18	1278.87	1283.67	1288.57	1.295.26	1298.13	1302.91	1307.56	1312.21	1316.87	1321.61	1326.28	1330.99	1335.74	1340.27	1345.05	1349.7	1354.2	1358.9	1363.2	1367.5	1372.1	1376.9	1382	1386.9	1391.75
θ	5	5	5	5	5	13	5	2	15	5	2	5	5	5	2	2	5	2	5	2	<u>_</u>	5	5	5	5	5	5	2	15	5	2	5	15	5	15	5	15	15	5	2	15	15
Time	5/31/13 0:12 2325	5/31/13 0:27 2340	5/31/13 0:42 2355	5/31/13 0:57 2370	5/31/13 1:12 2385	5/31/13 1:27 2400	5/31/13 1:42 2415	5/31/13 1:57 2430	5/31/13 2:12 2445	5/31/13 2:27 2460	5/31/13 2:42 2475	5/31/13 2:57 2490	5/31/13 3:12 2505	5/31/13 3:27 2520	5/31/13 3:42 2535	5/31/13 3:57 2550	5/31/13 4:12 2565	5/31/13 4:27 2580	5/31/13 4:42 2595	3/31/134:57 2610	C797 711C F1/15/C	5/31/13 5:27 2640	5/31/13 5:42 2655	5/31/13 5:57 2670	5/31/13 6:12 2685	5/31/13 6:27 2700	5/31/13 6:42 2715	5/31/13 6:57 2730	5/31/13 7:12 2745	5/31/13 7:27 2760	5/31/13 7:42 2775	5/31/13 7:57 2790	5/31/13 8:12 2805	5/31/13 8:27 2820	5/31/13 8:42 2835	5/31/13 8:57 2850	5/31/13 9:12 2865	5/31/13 9:27 2880	5/31/13 9:42 2895	5/31/13 9:57 2910	5/31/13 10:12 2925	5/31/13 10:27 2940

Calc, D _n	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000
-	102.5	100.2	100.3	1.66	104.1	583	100.6	100.1	100.6	102.5	103.1	101.1	101.3	101.1	98.9	101.4	99.8	102.2	103.3	104.3	100.2	98.6	99.8	102.6	104.8	104.3	105.5	106.0	104.7	103.1	103.5	103.7	103.1	102.7	99.5	9,99	105.1	103.1	101.8	104.5	101.0	103.6
2	6.32	6.19	6.21	6.57	6.47	6.15	6.37	6.38	6.42	6,48	6.31	6.24	6,49	6.24	6.54	6.58	6.69	6.54	6.58	6.68	6.51	6.62	6.86	6.64	6.81	6.87	6.58	6.66	6.54	6.51	6.80	6.82	6.60	6,65	6.37	6.38	6.65	6.32	6.27	6.32	6.33	5.99
V _{n(s0)}	4.916	4,687	4,687	4.892	5.087	4.549	4.832	4.833	4.833	4.960	4.862	4.696	4.892	4.696	4.786	4.952	4.952	4.943	5,006	5.142	4.828	4.828	5.060	5.012	5.272	5.282	5.109	5.205	5.022	4.926	5.176	5.205	5.018	5,047	4.689	4.747	5.243	4.899	4.832	5.013	4.879	4.744
HΔ	0.33483	0.31889	0.31777	0.35404	0.34722	0.31141	0.33474	0.33914	0.33528	0.33983	0.32326	0.31304	0.33866	0.31304	0.34102	0.34856	0.36066	0.34263	0.34526	0.35701	0.34136	0.35283	0.37871	0.35168	0.37366	0.37946	0.34725	0.35680	0.34066	0.33837	0.37089	0.37446	0.35266	0.35968	0.33067	0.33650	0.37125	0.33648	0.33557	0.34271	0.34689	0.31127
$\sqrt{\Delta P}_{m}$	0.11	0.10	0.10	0.11	0.11	0.10	0.11	0.11	0.11	0.11	11.0	01.0	0.11	0.10	0.11	0.11	11.0	0.11	0.11	0,11	0.11	0.11	0.11	0.6	0.11	0.11	0.11	0.11	0.13	0.11	0.11	0.11	0.1	0.11	0.1	0.11	0.11	0.11	0.11	0.12	0.11	0.10
ų	-107	011	<u>[</u>	<u>9</u>	011	2	Ξ	601	115	117	911	611	611	611	123	130	120	2	124	137	17	12	.123	125	123 -	124	125	124	127	126	521	125	124	122	5	. 81	÷	113	601	107	2	8
₽₽	0.0115	0.0110.0	0110.0	0.0123	0.0120	0.0108	0.0116	0.0117	0.0117	0.0119	0.0113	0.0110	0.0119	0110.0	0.0120	0.0122	0.0126	0.0120	0.0123	0.0125	0.0119	0.0123	0.0132	0,0123	0.0130	0.0132	0.0121	0.0124	6110'0	0.0118	0.0129	0.0130	0.0122	0.0124	0.0114	0.0115	0.0126	0.0114	0.0113	0.0115	0.0116	0.0104
Tand	E	12	1	2	22	P.	2	2 22 2	69	69	69	69	69	69	71	72	52	R	75	75	9/	76	11	11	82	67. 1	62	80	80	80	80	100	~1 26	82	82	83	83	83	68	83	82	53
T_{nh}	12	5	72	12	12	12	2	12	71	71	12	5	Ľ	1	5	74	75	92	11	78	2/2	78	62	79	80	81	8	81	81	8	82	83	25	84	2	85	85	85	84	54	69	83
ч Ч	5.025	4,800	4.800	5.000	5.200	4.650	4.930	4.940	4.940	5.070	4.970	4:800	5.000	4.800	4.910	5,090	5.100	5.100	5.175	5.325	5;000.	5.000	5.250	5.200	5.480	5.500	5.320	5,420	5.230	5.130	5.400	5,440	5.255	5.285	4.910	4,980.	5,500	5.140	5.060	5.250	5,100	4.950
Vn ced	1401.700	406.500	1411.300	1416.300	1421.500	1426.150	1431.080	1436.020	1440.960	1446.030	1451.000	1455.800	1460.800	1465.600	1470.510	1475,600	1480.700	1485.800	1490.975	1496.300	005.1041	1506.300	1511.550	1516.750	1522.230	1527.730	1533.050	1538,470	1543.700	1548.830	1554.230	1559,670	1564.925	1570.210	1575.120	1580.100	1585,600	1590.740	1595.800	1601.050	1606.150	1611.100
Veisier	1396.675	1401.7	1406.5	1411.3	1416.3	1421.5	1426.15	1431.08	1436.02	1440.96	1446.03	1451	1455.8	1460.8	1465.6	1470.51	1475.6	1480.7	1485.8	1490.975	5.0641	1501.3	1506.3	1511.55	1516.75	1522.23	1527.73	1533.05	1538.47	1543.7	1548.83	1554.23	1559.67	1564.925	1570.21	1575.12	1580.1	1585.6	1590.74	1595.8	1601.05	1606.15
θ	15	15	15	15	5	15	3	15	5	5	15	5	5	15	5	51	5	2	5	5	ņ	2	15	5	2	15	5	15	5	15	15	15	5	15	5	5	15	15	15	5	5	2
Time	5/31/13 10:42 2955	5/31/13 10:57 2970	5/31/13 11:12 2985	5/31/13 11:27 3000	5/31/13 11:42 3015	5/31/13 11:57 3030	5/31/13 12:12 3045	5/31/13 12:27 3060	5/31/13 12:42 3075	5/31/13 12:57 3090	5/31/13 13:12 3105	5/31/13 13:27 3120	5/31/13 13:42 3135	5/31/13 13:57 3150	5/31/13 14:12 3165	5/31/13 14/27 3180	5/31/13 14:42 3195	5/31/13 14:57 3210	5/31/13 15:12 3225	5/31/13 15/27 3240	CC22 24C1 21/15/C	5/31/13 15:57 3270	5/31/13 16:12 3285	5/31/13 16:27 3300	5/31/13 16:42 3315	5/31/13 16:57 3330	5/31/13 17:12 3345	5/31/13 17:27 33:60	5/31/13 17:42 3375	5/31/13 17:57 3390	5/31/13 18:12 3405	5/31/13 18:27 3420	5/31/13 18:42 3435	5/31/13 18:57 3450	5/31/13 19:12 3465	5/31/13 19:27 3480	5/31/13 19:42 3495	5/31/13 19:57 3510	5/31/13 20:12 3525	5/31/13 20:27 3540	5/31/13 20:42 3555	5/31/13 20:57 3570

_	_	_		_			-	_		_	_								_															_				
Cale D	0.000	0000	0,000	0.000	0,000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	
-	98.3	102.7	39.5	101.3	103.7	102.7	103.6	102.6	102.4	102.9	100.8	102.3	98.3	99.7	104.0	104.2	103.9	106.3	104.7	104.8	106.5	104.5	103.5	103.2	103.5	101.0	102.9	100.3	103.0	100.3	102.2	104.9	104.4	101.1	100.7	103.0	104.8	
>	12	5.98	5.97	5.94	6.25	5.94	6.22	6.35	5.95	5.95	6.18	6.18	6.10	6.13	5.95	5,95	5.96	5.84	5.93	5.95	5.78	5.93	5.79	6.16	6.02	6.02	5.93	6.04	6.06	6.01	5,69	6.01	5.87	5,84	5.84	5.76	5.67	
V	4.609	4.705	4.569	4.627	4.983	4.692	4.963	5.021	4.713	4.735	4.813	4.882	4.626	4.717	4.785	4.795	4.776	4.796	4,796	4.825	4.757	4.786	4.620	4.903	4.805	4.689	4.708	4.679	4.835	4.660	4.494	4,874	4.737	4.562	4.543	4.572	3.361	
ΔH	0.32621	0.31125	0.31178	0.30879	0.34113	0.30764	0.33749	0.35176	0.30737	0.30795	0.33164	0.33104	0.32218	0.32544	0.30882	0.30882	0.30885	0.29750	0.30671	0.30969	28162.0	0.30671	0.29130	0.32994	0.31508	0.31508	0.30616	0.31805	0.32218	0.31565	0.28289	0.31594	0.30076	0.29778	0.29724	0.28781	0.27941	
5	0.10	0.10	0.10	0.10	0.11	0.10	0.11	0.11	0.10	0.10	0.11	0.11	01.0	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	01.0	0.10	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
F	102	102	100	001	001	001	66	66	- 16	. 97	76	98	98	- 86	97	67	98	97.	97	97	1.6	97	98	98	98	86	98	- 86	96	97	97 -	76	97	97	68	66	98	
₽Þ	0.0109	0.0104	0.0104	0.0103	0.0114	0.0103	0.0113	0.0118	0.0104	0.0104	0.0112	0.0112	0.0109	0.0110	0.0104	0.0104	0.0104	0.0100	0.0103	0.0104	8600.0	0.0103	0.0098	0.0111	0.0106	0.0106	0.0103	0.0107	0.0108	0.0106	0.0095	0.0106	0.0101	0.0100	0.0100	0.0097	0.0094	
T	18	19	80	80	62	78	5	26	2	2	2	02	02	02	12	71	5	. 73	52	- 73	57	57	5	۲. ۲	R	12	73	5	12	F2.	- 13	73	5	73	5	5	52	
$T_{n,n}$	18	18	80	80	¢.	18	5	26	69	12	71	12	17	72	5	73	7	7	74	74	14	74	44	74	74	75	7	77	74	74	74	75	2	74	74	74	74	
V. "V	4:800	4,900	4.750	4.810	5,170	4.860	5.130	5.180	4.800	4.840	4.920	4,990	4.729	4.831	4.910.	4.920	4.910	4.930	4.930	4.960	4-890	4.920	4.750	5.040	4,940	4,820	4.840	4.810	4.970	4,790	4.620	5.020	4.870	4.690	4.670	4.700	3.455	
Vuend	1615.900	1620.800	1625.550	1630.360	1635.530	1640.390	1645.520	1650.700	1655.500	1660.340	1665.260 -	1670.250	1674.979	1679.810	1684.720	1689.640	1694.550	1699.480	1704.410	1709.370	1714.260	1719.180	1723,930	1728.970	1733.910	1738,730	1743.570	1748.380	1753.350	1758.140	1762.760	1767.780	1772.650	1777.340	1782.010	1786.710	1790.165	
Varian	1611.1	1615.9	1620.8	1625.55	1630.36	1635.53	[640.39	1645.52	1650.7	1655.5	1660.34	1665.26	1670.25	1674.979	1679.81	1684.72	1689.64	1694.55	1699.48	1704,41	76.9071	1714.26	1719,18	1723.93	1728.97	1733.91	1738.73	1743.57	1748.38	1753.35	1758.14	1762.76	1767.78	1772.65	1777.34	1782.01	1786.71	1790,165
8	15	15	5	15	2	5	5	12	5	5	5	2	5	3	15	5	15	5	15	5	2	5	5	5	2	2	2	15	2	5	3	15	5	15	5	2	Ξ	
Time	5/31/13 21:12 3585	5/31/13 21:27 3600	5/31/13 21:42 3615	5/31/13 21:57 3630	5/31/13 22:12 3645	5/31/13 22:27 3660	5/31/13 22:42 3675	5/31/13 23:57 3690	6/1/13 0:12 3705	6/1/13 0:27 3720	6/1/13 0:42 3735	6/1/13 0:57 3750	6/1/13 1:12 3765	6/1/13 1:27 3780	6/1/13 1:42 3795	6/1/13 1:57 3810	6/1/13 2:12 3825	6/1/13 2:27 3840	6/1/13 2:42 3855	6/1/13 2:57 3870	0/1/13 3:12 3885	6/1/13 3:27 3900	6/1/13 3:42 3915	6/1/13 3:57 3930	6/1/13 4:12 3945	6/1/13 4:27 3960	6/1/13 4:42 3975	6/1/13 4:57 3990	6/1/13 5:12 4005	6/1/13 5:27 4020	6/1/13 5:42 4035	6/1/13 5:57 4050	6/1/13 6:12 4065	6/1/13 6:27 4080	6/1/13 6:42 4095	6/1/13 6:57 4110	6/1/13 7:12 4125	

5.2 HFK Raw Data

								Nome	graph						
		Phur	29.65		%O	20.90		ΔP_{evg}	0.00661		D _{n n}	1.00		ථ	0.84
		Patadic	0,00		%C0;	0.10		-			'n	0.496		× ×	0.099
		ΔH@	1.87		%N3	79		B	0.0400		Ψ	0.001342		٩,	29.6500
		9			Ϋ́	28.8520	с. А	Ŵ,	28.4179					P"	29.7875
	Time	θ	V _{m start}	Vnmf	N.	$T_{\alpha h}$	$T_{n\rm net}$	ΔP	Ľ,		ΔH	Vnint	v,	-	Calc. D _n
5/29/13 9:25	0	5	665.649	669.607	3.958	61.0	61.0	0.0043	68.00	0.07	0.26721	3.974	3.73	92.8	0.000
5/29/13 9:40	5	5	669.607	673.438	3,831	63.0	62.0	0:0040	71.00	0.06	0.24788	3.831	3.61	93.1	0.000
5/29/13 9:55	30	5	673.438	678.147	4.709	65.0	64.0.	0.0059	74.00	0.08	0.36496	4.693	4.39	94.1	0.000
5/29/13 10:10	\$	15	678.147	683.274	5.127	68.0	66.0	0.0066	75.00	0.08	0.40943	5.081	4.65	96.5	0.000
5/29/13 10:25	99	15	683.274	687.997	4.723	70.0	67.0	0.0057	77.00	0.08	0.35329	4.662	4.33	95.4	0.000
5/29/13 10:40	5	15	687.997	693.269	5.272	71.0	68.0	0.0070	75.00	0.08	0.43631	5.195	4.79	95.8	0.000
5/29/13 10:55	8	5	693.269	698.767	5.498	72.0	69,0	0.0074	76.00	0.09	0.46125	5,408	4.93	97.0	0.000
5/29/13 11:10	105	15	698.767	704,287	5,520	72.0	70.0	0.0075	78.00	0.09	0.46618	5.430	4.97	97.0	0.000
5/29/13 11:25	120	15	704.287	710,013	5.726	70.0	69.0	0.0082	81.00	0.09	0.50544	5.654	5.21	96.8	0.000
5/29/13 11:40	135	15	710.013	715.916	5.903	71.0	0'69	0.0089	82.00	0.09	0.54809	5.819	5.43	95.7	0.000
5/29/13 11:55	150	15	715.916	720.883	4.967	71.0	69.0	0.0064	\$4.00	0.08	0.39268	4.894	4,62	95.1	0.000
5/29/13 12:10	591	15	720,883	726.311	5.428	70.0	69.0	0,0074	86.00	0.09	0.45195	5.359	4.97	97.1	0.000
5/29/13 12:25	021	15	726.311	732.319	6,008	70.0	69.0	0600.0	89.00	60'0	0.54666	5.933	5.50	97.7	0.000
5/29/13 12:40	561	15	732.319	738.307	5.988	71.0	68.0	0,0090.	91.00	0'00	0.54468	5.903	5.51	97.4	0.000
5/29/13 12:55	210	15	738.307	744.731	6,424	71.0	69,0	0,0100	92.00	0.10	0.60467	6.333	5.81	99.2	0.000
5/29/13 13:10	502	15	744.731	750.900	6.169	70.0	- 0'69	0.0092	95.00	0.10	0.55277	6.093	5.59	99.8	0.000
5/29/13 13:25	240	15	750.900	756.852	5,952	71.0	68.0	0.0092	94.00	0.10	0.55377	5.867	5.39	96.0	0.000
5/29/13 13:40	255	15	756.852	763.086	6.234	71.0	69.0	0.0095	98.00	0.10	0.56826	6.145	5.70	5.99	0.000
5/29/13 13:55	270	15	763,086	769.448	6.362	69	68	0.0098	100	0.10	0.58246	6,295	5.80	100.3	0.000
5/29/13 14:10	182	5 3	769.448	775.853	6,405	69 (89	0.0104	8	0.10	0.61483	6.339	5.99	98.3	0.000
5/20/13 14/70/2	215	2 2	200,017	112 091	512.0	60 0	2 5	2110.0	5 5	1.0	0.40550	0.842 2 601	1910	5.66	0,000
5/29/13 14:55	330	2 22	789.341	796.278	6.937	88	61	0.0110	011	0.10	0.64110	6.878	0.19	104.4	0.000
5/29/13 15:10	345	5	796.278	802.937	6.659	20	67	0.0111	112	0.11	0.64589	6.578	6.23	9°66	0.000
5/29/13 15:25	360	5	802.937	809.639	6.702	5	. 89	0.0107	<u>7</u>	0.10	0.62220	6.595	6.13	101.8	0.000
5/29/13 15:40	375	2	809.639	816.500	6.861	5	02.0	0.0120	113.	0.11	0.70099	6.740	6,49	98.2	0.000
5/29/13 15:55	390	23	816.5	823.900	7,400	51	2	0.0125	101	11.0	0.73862	7.270	6.59	103.2	0.000
01:01 61/67/6	61	<u>c</u> =	8,028	01000002	00/10	2;		0.0110.0	1	10.1	0.67178	6.594	6.35	98.I	00070
CONTRACTOR	111		0.000	007-110	A117	15	Ξ.	2210.0	2		CCKU1.U	1107/	CC.0	C.101	0.000

Cale. D,	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	103.6	99.0	100.4	101.4	99.8	7.66	101.7	101.3	102.8	107.5	102.0	101.5	100.8	104.1	98.0	98.5	98.3	104.5	98.6	102.3	102.9	105.9	103.3	100.7	100.7	106.6	100.3	97.4	106.5	106.1	102.6	99.9	102.6	99.1	102.4	9.99	100.5	100.6	99.7	102.3	104.3	103.3
'n	6.57	6.56	6.48	6.65	5.62	5.90	5.78	6.39	6.25	5.79	6.08	5.75	6.29	5.83	6.35	6.33	6.36	6.11	6.41	6.33	6.16	5.88	6,14	6.20	6.50	6.20	6.76	6.61	6.27	6.27	6.35	6.48	6.32	6.58	6.45	6.48	6.28	6.39	6.50	6.47	6.55	6.37
Vreind	7.199	6.893	6.903	7.186	5.990	6.276	6.272	6.936	6.895	6.685	6.661	6.291	6.841	6.566	6.753	6.753	6.770	6.919	6.851	7.018	6.830	6.752	6.863	6.756	7.070	7.144	7.321	6.943	7.188	7.161	7.018	6.972	6.988	7.035	7.126	6.979	6.822	6,949	666.9	7.155	7.381	7.106
Ч	0.71784	0.72036	0.70279	0.74710	0.53677	0.58986	0.56786	0.70046	0.67197	0.57893	0.63861	0.57446	0.68315	0.59453	0.70990	0.70262	0.70929	0.65575	0.72193	0.70388	0.66778	0.60762	0.65935	0.67134	0.73596	0.67077	0.79289	0.75498	0.67586	0.67841	0.69495	0.72397	0.68901	0.75045	0.72270	0.72936	0.68874	0.71269	0.73665	0.73066	0.74933	0.70737
	0.11	0.11	0.11	0.11	01.0	01.0	01.0	0.11	0.11	0.10	0.10	0.10	11.0	0.10	0.11	0.11	0.11	0.10	0.11	0.11	0.11	0.10	0.10	11.0	11.0	0.11	0.12	0.11	0.11	0.11	0.11	0.11	11.0	0,11	0.11	0.11	0.11	0.11	0.11	0.11	- 0,11	0.11
Ľ,	:	Ξ	III.	601	108	108	108	106	105	콩	2	102	102	00	66	8	00	66	66	66	66	6	001	001	101	101	201	6	103	501	103	103	103	5	5	102	101	101	101	101	101	101
ΔP	0.0123	0.0123	0.0120	0.0127	1600.0	0010'0	0.0096	S110'0-	0.0113	0.0097	0.0107	0.0096	0.0115	0.0099	0.0118	0.0117	0.0118	0.0109	0.0120	0.0117	0.0111	0.0101	0110.0	0.0112	0.0123	0.0112	0.0133	0.0127	0.0114	0.0114	0.0117	0.0122	0.0116	0.0126	0.0121	0.0122	0.0115	0.0119	0.0123	0.0122	0.0125	0.0118
Tmost	- 12.	12	71	12	71	12	72	74	5	E.	57	73	11	5	12	5	Ę	5	ţ,	13	67	73	5	72 .	5	5	12	22	69	71	01	2 2	22	02	F.	Ľ,	£!	Ľ!	<u>[</u>]	£1	73	73
\mathbf{T}_{min}	17	F	[2	Ľ	5	73	75	57	75	76	76	75	75.	75	75	75	76	75	75	52	73	75	74	7	74	75	73	[2	Ē	Ę	Ľ	12	5	73	75	75	55	75	75	75	75	75
۷.	7.300	6.990	7.000	7.300	6.100.	6.390	6.410	7,060	7.045	6.845	6.820	6.430	6.990	6.710.	6.900	6.900	6.930	7.070	7,000	7.170	7,030	6.900	7.000	6.890	7.210	7,300	7,450	7,040	7,290	7.290	7.130	7.070	7,100	7.160	7.280	7.130	6.970	7.100	7:150	7.310	7.540	7.260
Varead	845.010	852.000	859.000	866.300	872.400	878.790	885.200	892.260	899.305	906.150	912.970	919.400	926,390	933.100	940.000	946,900	953.830	960.900	967.900	975.070	982.100	989.000	996,000	1002.890	1010.100	1017.400	1024.850	068.1501	1039.180	1046.470	1053.600	1060.670	1067.770	1074.930	1082.210	1089.340	1096.310	1103,410	1110.560	1117.870	1125.410	1132.670
V _{n viar}	837.71	845.01	852	859	866.3	872.4	878.79	885.2	892.26	899.305	906.15	912.97	919,4	926.39	933.1	940	946.9	953.83	960.9	967.9	975.07	982.1	989	966	1002.89	1010.1	1017,4	1024.85	1031.89	1039.18	1046.47	1053.6	1060.67	1067.77	1074.93	1082.21	1089.34	1096.31	1103.41	1110.56	1117.87	1125.41
9	15	2	15	3	15	15	5	15	5	15	5	5	15	15	5	2	5	5	15	51	51	15	5	2	2	2	5	15	15	15	15	15	15	15	5	15	15	5	5	15	5	5
Time	435	450	465	480	495	510	525	540	555	570	585	600	615	630	645	660	675	690	705	720	262	750	765	780	262	810	825	840	855	870	585	906	915	930	945	960	975	066	1005	1020	1035	1050
	5/29/13 16:40	5/29/13 16:55	5/29/13 17:10	5/29/13 17:25	5/29/13 17:40	5/29/13 17:55	5/29/13 18:10	5/29/13 18:25	5/29/13 18:40	5/29/13 18:55	5/29/13 19:10	5/29/13 19:25	5/29/13 19:40	5/29/13 19:55	5/29/13 20:10	5/29/13 20:25	5/29/13 20:40	5/29/13 20:55	5/29/13 21:10	\$/29/13 21:25	5/29/13 21,40	5/29/13 21:55	5/29/13 22:10	5/29/13 22:25	5/29/13 22:40	5/29/13 22:55	5/29/13 23:10	5/29/13 23:25	5/29/13 23:40	5/29/13 23:55	5/30/13 0:10	5/30/13 0:25	5/30/13 0:40	5/30/13 0:55	5/30/13 1:10	5/30/13 1:25	5/30/13 1:40	5/30/13 1:55	5/30/13 2:10	5/30/13 2:25	5/30/13 2:40	5/30/13 2:55

Cale. D.	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0,000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	104.4	101.2	103.3	105.7	100.5	104.9	100.3	101.3	100.1	102.0	105.5	100.4	100.7	103.1	101.1	105.5	103.3	104.5	102.0	100.3	101.2	97.8	7.72	101.2	99.2	99.4	103.3	100.5	108.4	105.5	94.5	93.3	100.1	104.5	97.1	101.4	103.8	99.4	98.6	102.5	99.4	100.1
'n	6.26	6.47	6.42	6.28	6.31	6.25	6.41	6.41	6.41	6.45	6.38	6.22	6.38	6.39	6.47	6.14	6.28	6.26	5.98	6.26	6.26	6.24	6.25	6.22	6.25	6.33	6.37	6.23	6.45	6.20	6.49	6.36	6.25	6.13	6.39	6.47	6.35	6.17	6.45	6.30	6.73	6.41
Vincent	7.056	770.7	7.165	7.184	6.861	2,096	6.969	7.037	6.959	7.155	7.302	6.763	6.969	7.125	7.077	7,010	7.021	7.066	6.586	6.775	6.834	6.569	6.560	6.762	6.655	6.753	7.047	6.704	7.488	7.073	6.595	6.367	6.711	6.837	6.594	6.923	6.971	6.513	6.748	6.825	7.070	6.777
НΔ	0.68339	0.73134	0.71935	0.69061	0.69662	0.68461	0.72193	0.72193	0.72193	0.73528	0.71591	0.67797	0.71524	0.71396	0.73196	0.65935	0.68932	0.68275	0.62286	0.68089	0.69089	0.67372	0.67253	0.66720	0.67197	0.69045	0.69517	0.66547	0.71300	0.66951	0.72541	0.69575	0.67260	0.64004	0.68973	0.69851	0.67634	0.64377	0.70349	0.66569	0.75862	0.68805
	0.11	0.11	0.11	0.11	0.11	0.11	11"0.	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.11	0.11	0.10	0.11	0.11	0.11	0.11	11.0	11.0	11.0	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.11	0.11	0.11	01.0	0.11	0.11	0.11	0.11
Ŀ,	101	0	101	001	00	00	66	66	66	86	6	002	- 66	00	00	00	00	101	101	6	203	103	104	101	- 501	105	901	901	901	101	10	105	105	108	Ξ	11	5	Ξ	- 111	Ē	14	4
٩D	0.0114	0.0122	0.0120	0.0115	0.0116	0.0114	0.0120	0.0120	0.0120	0.0122	0.0119	0.0113	0.0119	0.0119	0.0122	0.0110	0.0115	10,0114	0.0104	0.0114	0.0114	0.0113	0.0113	0,0112	0.0113	0.0116	0.0117	0.0112	0.0120	0.0112	0.0122	0.0117	0.0113	8010'0	0.0117	0.0119	0.0115	0.010.0	0.0119	0.0113	0.0129	0.0117
T	73	R	5	73	Ē	13.	5	73	5	13	Ę	5	5	Ę	5	F!	E	F!	17	Ľ,	22	5	72	5	72	13	73	73	73	72	71 ×	.72	72	57	52	13	74	7	75	75	75	75
f	75	75	5	75	15	75	75	75	75	75	75	75	75	75	75	74	74	75	75	77	74	77	7	75	75	75	75	75	75	ß	74	75	26	76	- 92	7	77	11	77	77	77	77
^"	7.210	7,230	7,320	7.340	7,010	7.250	7.120	7.190	7.110	7.310	7.460	6,910	7.120	7.280	7.230	7,150	7.160	7.220	6.730	6.910	6.970	6.700	6.690	6.910	6.800	6.900	7.200	6.850	7.650	7.200	6,725	6.505	6,870	7,000	6.750	7,100	7.150	6,680	6.920	7,000	7.250	6.950
Vanad	1139.880	1147.110	1154.430	1161.770	1168.780	1176.030	1183.150	1190.340	1197.450	1204.760	1212,220	1219.130	1226.250	1233.530	1240.760	1247.910	1255.070	1262.290	1269.020	1275.930	1282.900	1289,600	1296.290	1303,200	1310.000	1316.900	1324.100	1330.950	[338,600	[345.800	1352.525	1359.030	1365.900	1372.900	1379.650	1386.750	1393.900	1400.580	1407.500	1414.500	1421.750	1428.700
V _{n viar}	1132.67	1139.88	1147.11	1154.43	1161.77	1168.78	1176.03	1183.15	1190.34	1197.45	1204.76	1212.22	1219.13	1226.25	1233.53	1240.76	1247.91	1255,07	1262.29	1269.02	1275.93	1282.9	1289.6	1296,29	1303.2	1310	1316.9	1324.1	1330.95	1338.6	1345.8	1352.525	1359.03	1365.9	1372.9	1379.65	1386.75	1393.9	1400.58	1407.5	1414.5	1421.75
8	5	15	ŝ	15	5	2	5	15	5	15	15	5	15	5	15	15	15	15	2	15	2	15	2	2	5	5	2	5	15	15	15	15	5	15	5	15	15	15	15	15	15	15
Time	1065	1080	1095	0111	5211	1140	1155	1170	1185	1200	1215	1230	1245	1260	1275	1290	1305	1320	1335	1350	5901	1380	1395	1410	55	1440	1455	1470	1485	1500	1515	1530	1545	1560	1575	1590	1605	1620	1635	1650	1665	1680
	5/30/13 3:10	5/30/13 3:25	5/30/13 3:40	5/30/13 3:55	5/30/13 4:10	5/30/13 4:25	5/30/13 4:40	5/30/13 4:55	5/30/13 5:10	5/30/13 5:25	5/30/13 5:40	5/30/13 5:55	5/30/13 6:10	5/30/13 6:25	5/30/13 6:40	5/30/13 6:55	5/30/13 7:10	5/30/13 7:25	5/30/13 7:40	5/30/13 7:55	01:8 CI/0C/S	5/30/13 8:25	5/30/13 8:40	5/30/13 8:55	5/30/13 9:10	5/30/13 9:25	5/30/13 9:40	5/30/13 9:55	5/30/13 10:10	5/30/13 10:25	5/30/13 10:40	5/30/13 10:55	5/30/13 11:10	5/30/13 11:25	5/30/13 11:40	5/34/13 11:55	5/30/13 12:10	5/30/13 12:25	5/30/13 12:40	5/30/13 12:55	5/30/13 13:10	5/30/13 13:25

Cale D	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000°0	0.000	0.000	0,000
-	102.0	103.5	100.5	0.06	6.66	102.0	97.0	96.1	103.4	97.9	96.2	108.5	15.8	104.3	96.6	102.1	100.2	98.2	98.1	101.9	100.5	101.8	102.6	103.3	99.4	100.8	100.9	100.4	103.2	104.8	106.7	104.7	100.9	104.1	102.8	97.5	101.6	102.0	102.7	105.5	101.6	105.0
2	12.9	6.39	6.51	6.26	6,47	6.46	6.41	6.51	6.47	6.63	6.48	6.51	6.39	6,02	6.85	5.96	6.37	6.07	6.22	6.23	6.21	6.61	6.30	6.51	6.59	6.32	6,47	6.42	6,44	6.44	5.88	6.11	6.16	5.92	6.20	6.45	6.28	6.31	6.14	6.14	6.11	5.99
A LAN	1021	6.972	6.874	6.520	6.813	6.910	6.508	6.518	6.998	6.794	6.443	7.299	1.049	6.563	6.954	6.422	6.771	6.362	6.557	6.800	6.666	7.141	6.897	7.189	6.995	6.800	6,995	6.907	7.131	7.251	6.736	6.932	6.688	6.649	6.887	6.790	6.907	6.965	6,828	7.013	6.720	6.827
Ч	0.71158	0.68099	0.70203	0.65111	0.69925	0.68977	0.67817	0.69213	0.68804	0.72427	0.67407	0.67983	0.65965	0.59364	0.77881	0.59507	0.68768	0.63171	0.67283	0.67045	0.66089	0.74103	0.67939	0.72835	0.74494	0.68535	0.72365	0.71169	0.71894	0.71888	0.59851	0.65821	0.66014	0.61208	0.67266	0.72671	0.69191	0.69792	0.66182	0.66182	0.65581	0.63287
	10	11.0	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.12	0.10	0.11	0.10	0.11	0.11	0,11	0.11	0.11	0.11	0.11	0.11	11.0	0.11	0.11	0.11	0.10	0.10	0.10	01.0	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10
۲	14	5	117	116	[]5.	118	611	122	120	119	127	127	125	120	117	114	111.	108	10	106	108	Ξ	108	107.	108	108	106	901	105	3	<u>10</u>	ŝ	50	5	101	101	001	8	001	00	8	6
. 4V	0.0121	0.0116	0.0120	0.0111	0.0119	0.0118	0:0116	0.0119	0.0118	0.0124	0.0117	0.0118	0.0114	0.0102	0.0133	0.0101	0.0116	0.0106	0.0112	0,0112	0,0111	0.0125	0.0114	0.0122	0.0125	0.0115	0.0121	0.0119	0.0120	0.0120	0.0100	0.0109	0.0110.0	0.0102	0.0112	0.0121	0.0115	0.0116	0.0110	0.0110	0.0109	0.0105
F	75	75	. 51.	75	75	75	76	76	76	76	76	26	. 16	76	. 94	9.19	76	2/0	11	11	76	-76	76	-76	. 76	76	76	-92	76	35	75 -	75	76	7	ž	ž	Z	27	44	74	14	74
Ē	77	11	77	78	78	78	<u>6</u>	Ŕ	78	78	78	42	62	26	77	78	62	62	79	79	78	62	ę,	62	ę,	ę,	ġ,	61	<u>6</u> 2	78	11	F	22	1	76	76	76	76	76	76	76	76
^	7.200	7.150	7.050	6:700	7,000	7.100	6.700	6.710	7.190	6.980	6.620	7.500	1.080	6.720	7.130	6.600	6.970	6.550	6.750.	7.000	0.830	7.350	7.100	7,400	7.200	7,000	7.200	7,110	7.340	7.450	6.910	7.110	6,860	6.820	7.050	6.950	7,070	7.130	6.990	7,180	6.880	066.9
N	1435.900	1443.050	1450.100	1456.800	1463.800	1470.900	1477,600	[484.310	1491.500	1498,480	1505.100	1512.600	1513.680	1520.400	1527.530	1534,130	1541.100	1547.650	1554.400	1561.400	1368.230	1575.600	1582.700	1590.100	1597.300	1604.300	1611.500	1618,610	1625.950	(633,400	1640.310	1647,420	1654.280	1661.100	1668.150	1675.100	1682.170	1689.300	1696.290	1703.470	1710.350	1717.340
N N	1428.7	1435.9	1443.05	1450.1	1456.8	1463.8	1470.9	1477.6	1484.31	1491.5	1498.48	1505.1	1512.6	1513,68	1520.4	1527.53	1534.13	1541.1	1547.65	1554.4	1561.4	1568.25	1575.6	1582.7	1590.1	1597.3	1604.3	1611.5	1618.61	1625.95	1633.4	1640.31	1647.45	1654.28	1661.1	1668.15	1675.1	1682.17	1689.3	1696.29	1703.47	1710.35
θ	15	5	15	15	ŝ	2	2	<u>5</u>	2	5	15	15	5	15	15	5	5	15	15	15	5	5	5	5	5	5	2	2	2	15	15	15	15	15	15	5	15	5	15	5	15	15
Time	1695	1710	1725	1740	1755	1770	1785	1800	1815	1830	1845	1860	1875	1890	1905	1920	1935	1950	1965	980	\$661	2010	2025	2040	2055	2070	2085	2100	3115	2130	3145	2160	2175	2190	2205	2220	2235	2250	2265	2280	2295	2310
	5/30/13 13:40	5/30/13 13:55	5/30/13 14:10	5/30/13 14:25	5/30/13 14:40	5/30/13 14:55	5/30/13 15:10	5/30/13 15:25	5/30/13 15:40	5/30/13 15:55	5/30/13 16:10	5/30/13 16:25	5/30/13 16:40	5/30/13 16:55	5/30/13 17:10	5/30/13 17:25	5/30/E3 17:40	5/30/13 17:55	5/30/13 18:10	5/30/13 18:25	5/30/13 18:40	5/30/13 18:55	5/30/13 19:10	5/30/13 19:25	5/30/13 19:40	5/30/13 19:55	5/30/13 20:10	5/30/13 20:25	5/30/13 20:40	5/30/13 20:55	5/30/13 21:10	5/30/13 21:25	5/30/13 21:40	5/30/13 21:55	5/3/013 22:10	5/30/13 22:25	5/30/13 22:40	5/30/13 22:55	5/30/13 23:10	5/30/13 23:25	5/30/13 23:40	5/30/13 23:55

r

_	_					_		_	_	_	_		_	_			_	_	_	_	_					_																
Calc. D,	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0'000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000
-	101.7	95.9	102.1	98.3	105.2	98.7	97.5	93.9	100.5	100.4	98.9	101.9	98.4	102.1	96.1	92.7	95.7	100.5	102.9	103.9	9.66	102.2	99.4	101.8	105.1	101.7	103.0	102.5	103.6	103.0	103.5	104.2	101.8	98.4	102.8	102.3	104.5	106.4	102.5	103.7	101.9	105.5
^	6.32	61.9	6.21	6.57	6.63	6.07	6.50	6.38	6.33	6'46	6.31	6.24	6.32	6.27	6.54	6.58	6,69	6.51	6.62	6.58	6.51	6.62	6.71	6.30	6.71	6.71	6.66	6.71	6.51	6.67	6.52	6.30	6.84	6.88	69.9	6.44	6,25	6.62	6.38	6.37	6.36	6.04
Vnisid)	6.864	6.324	6.716	6.828	7.418	6.335	6.730	6.385	6.709	6.834	6.569	6.667	6.717	6.703	6.545	6.379	6.687	6.813	7,092	7.092	6.775	7.046	6.927	6.655	7.320	160'2	7.110	7,139	6,969	7.104	7,004	6.808	922.7	7.056	7.180	6.899	6,889	7.454	7.167	7.065	6.956	6.869
Ч	0.67897	0.64831	0.64491	0.71919	0.74061	0.61395	0.70998	0.68892	0.66363	0.69043	0.65790	0.63822	0.69503	0.64411	0.69340	0.70805	0.73205	0.69084	0.71416	0.70135	0.69525	0.71805	0.73499	0.64698	0.73509	0.73839	0.72485	0.73780	0.68679	0.72295	0.69681	0.65005	0.76991	0.78435	0.74435	0.69484	0.66379	0.75081	0.74872	0.70954	0.70945	0.64503
	10	0.10	0.10	0.11	0.1	0.10	0.11	0.11	0.11	11'0 1	0.11	0,10	0.11	0.11	0.11	· 0.E1	0.11	0.11	. 0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	11.0	11'0	0.12	0.11	0.11	0.11	0.11	0.11	0.11	11.0	0.10
۴	108	601	112	113	0[]	13	Ξ	601	115	118	116	8	611	611	122	120	121	5	123	124	<u>6</u>	5	133	124	124	2	125	124	127	126	124	133	124	122	121	119	50	<u> </u>	110	107	105	103
٩D	0.0115	0.0110	0.0110.0	0.0123	0.0126	0.0105	1210.0	0.0117	0.0114	0.0119	0.0113	0.0110	0.0120	0.0111	0.0120	0.0122	0.0126	6110'0	0.0123	0.0121	0.0119	0.0123	0.0126	0.0111	0.0126	0.0126	0.0124	0.0126	0.0118	0.0124	0.0119	0.0111	1610.0	0.0133	0.0126	0.0117	0.0111	0.0125	0.0124	0.0117	0.0117	0.0106
T _{n out}	11	12.	12	12	12	5	-	2	70	71	12	12	12	Ľ,	5	73	74	75	76	92	77	28	78	62	62	80	100 100	50	81	8]	81	82	83	83	83	198 -	54	82	85	85	53	52
,ª	74	74	4	52	73	73	73	52	Ę	74	74	74	74	75	76	76	78	78	67	62	8	8	82	82	83	52	85	85	5	귫	65	86	87	87	87	88	88	88	88	87	85	85
>"	7.000	6.450	6.850	6.950	7.550	6.450	6.850	6.500	6.830	6.970	6.700	6,800	6.850	6.850	6.700	6.530	6.870	7:000	7.300	7.300	7,000.	7.280	7.170	6.890	7.590	7,380	7.400	7,430	7.240	7.380	7.290	7,100	7.550	7.370	7.500	7,220	7.210	7.800	7.500	7.380	7,240	7.150
V _m , end	2005.200	2011.650	2018,500	2025.450	2033.000	2039.450	2046.300	2052.800	2059.630	2066.600	2073.300	2080.100	2086.950	2093.800	2100.500	2107.030	2113.900	2120.900	2128.200	2135.500	2142.500	2149.780	2156.950	2163.840	2171.430	2178,810	2186.210	2193,640	2200,880	2208.260	2215.550	2222.650	2230.200	2237.570	2245.070	2252.290	2259,500	2267.300	2274,800	2282.180	2289.420	2296.570
Vmeter	1998.2	2005.2	2011.65	2018.5	2025.45	2033	2039.45	2046.3	2052.8	2059.63	2066.6	2073.3	2080.1	2086.95	2093.8	2100.5	2107.03	2113.9	2120.9	2128.2	2135.5	2142.5	2149.78	2156.95	2163.84	2171,43	2178.81	2186.21	2193.64	2200.88	2208.26	2215.55	2222.65	2230.2	2237.57	2245.07	2252.29	2259.5	2267.3	2274.8	2282.18	2289.42
θ	5	5	<u>5</u>	5	\$	2	2	<u>~</u>	5	2	15	15	2	2	15	2	15	2	5	5	5	15	5	15	5	15	5	5	15	5	5	2	2	5	<u>v</u>	5	2	ŝ	15	15	15	5
Time	2955	2970	2985	3000	3015	3030	30:45	3060	3075	3090	3105	3120	3135	3150	3165	3180	3195	3210	3225	3240	3255	3270	3285	3300	3315.	3330	3345	3360	3375	3390	3405	3420	3435	3450	3465	3480	3495	3510	3525	3540	3555	3570
	5/31/13 10:40	5/31/13 10:55	5/31/13 11:10	5/31/13 11:25	5/31/13 11:40	5/31/13 11:55	5/31/13 12:10	5/31/13 12:25	5/31/13 12:40	5/31/13 12:55	5/31/13 13:10	5/31/13 13:25	5/31/13 13:40	5/31/13 13:55	5/31/13 14:10	5/31/13 14:25	5/3 1/13 14:40	5/31/13 14:55	5/31/1315:10	5/31/13 15:25	5/31/13 15:40	5/31/13 15:55	5/31/13 16:10	5/31/13 16:25	5/31/13 16:40	5/31/13 16:55	5/31/13 17:10	5/31/13 17:25	5/31/13 17:40	5/31/13 17:55	5/31/13 18:10	5/31/13 18:25	5/31/13 18:40	5/31/13 18:55	5/31/13 19:10	5/31/13 19:25	5/31/13 19:40	5/31/13 19:55	5/31/13 20:10	5/31/13 20:25	5/31/13 20:40	5/31/13 20:55

5 Section: Raw Field Data Sheets

	_		_	_	_	_		-	_	_	_	_		_			_					-		-						_	_			-	-		-	_
Calc, D	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000°D	0.000	0.000	0,000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
I	107.7	103.1	105.3	105.2	102.8	101.9	1.101	95.9	96.4	102.3	100.4	104.1	103.0	101.6	104.7	101.4	9.66	101.3	104.5	103.1	92.2	105.4	105.9	104.5	104.9	104.6	103.8	105.8	103.4	103.4	I04.6	104.0	103.6	104.1	104.4	105.0	105.0	
V,	66°C	6.07	6.17	6.25	5.99	6.33	6.05	6.03	6.16	6.13	6.18	6.18	6.10	6.13	5.95	5.95	5.96	5,84	5.93	5.95	5.78	5.93	5.79	6.16	6.02	6.02	5.96	6.04	6.06	6.01	5.69	6.01	5.87	5.84	5.84	5.76	5.67	
V _{In[SI0]}	C46.D	6.747	7.029	711.7	6.684	6.988	6.632	6.255	6,447	6.813	6.743	6,994	6.830	6.765	6.787	6.573	6.446	6.440	6.742	6.683	5.800	6.799	6.657	6.99]	6.859	6.839	6.721	6.948	6.837	6.768	6,482	6.804	6.617	6.617	6.627	6.558	5.602	
Ч	0.63269	0.65107	0.67658	0.69486	0.63997	0.71052	0.64975	0.64133	0.66835	0.66606	0.68006	0.68006	0.66185	0.66792	0.63262	0.63027	0.62855	0.60094	0.61722	0.62263	0.58615	0.61606	0.58565	0.66397	0.63526	0.63526	0.62327	0.64185	0.65141	0.63820	0.57197	0.63939	0.60923	0.60320	0.60212	0.58301	0.56599	
	0.10	0.10	0.11	0.11	0.10	0.11	0.10	0.10	, 0,11	0.10	0.11	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	01.0	0.10	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	01.0	0.10	0.10	01.0	0.10	0.10	
Т,	103	102	100	001	6	00	8	100	86	38	86	86	86	8	. 16	97	86	76	52	56	56	97	98	86	98	98	98	86	96	97	97	97	57	76	98	8	98	
₽₽	0.0104	0.0107	0.0111	0.0114	0.0105	0.0117	0.0107	0.0106	0.0111	0.0110.0	0.0112	0.0112	0:0109	0110.0	0.0104	0.0104	0.0104	00100	0.0103	010/0	0.0098	0.0103	0.0098	0.0111	0.0106	0.0106	0.0104	0.0107	0.0108	0.0106	0.0095	0.0106	0.0101	0.0100	0.0100	0.0097	0.0094	
T _{m tot}	E8.	82	12	1.0	80	67	78	1	L,	2	74	74	74	75	76	76	75	12	. 72	71	- 01	.69	69	69	10	04	10	11.	5	C1 C1	5	73	13	ľ,	73	5	13	•
\mathbf{T}_{nh}	85	84	83	22	82	18	80	65	76	81	82	22	ç	50	80	76	92	P.	68	68	68	69	70	12	51	5	72	5	5	ĥ	13	7	74	74	74	7	74	
۲. ۲	7.230	7.010	7.290	7.380	6.920	7.220	6,840	6.440	6.600	7.040	6.980.	7.240	7.070	6.990	7.000	6.730	6.600	6,520	6.800	6.740	0.68.6	6.870	6.740	7.090	6.970	6.950	6.830	7.060	6.960	6.890	6.600	6.940	6.750	6.750	6.760	6.690	5.715	
Vnmd	2303,800	2310.810	2318.100	2325.480	2332.400	2339.620	2346.460	2352.900	2359.500	2366.540	2373,520	2380.760	2387,830	2394,820	2401.820	2408.550	2415.150	2421.670	2428.470	2435.210	2441.060	2447,930	2454.670	2461.760	2468.730	2475.680	2482.510	2489.570	2496.530	2503.420	2510.020	2516.960	2523.710	2530.460	2537.220	2543.910	2549.625	
V _{n start}	2296.57	2303.8	2310.81	2318.1	2325,48	2332.4	2339.62	2346.46	2352.9	2359.5	2366.54	2373.52	2380.76	2387.83	2394,82	2401,82	2408.55	2415.15	2421.67	2428.47	12,6552	2441.06	2447.93	2454.67	2461.76	2468.73	2475.68	2482.51	2489.57	2496.53	2503.42	2510.02	2516.96	2523.71	2530.46	2537.22	2543.91	2549.625
θ	15	15	15	5	15	3	5	15	15	5	2	5	15	5	15	15	15	15	15	15	ĉ	51	15	2	5	15	51	2	5	5	2	2	5	5	15	2	5	5
Time	3585	3600	3615	3630	3645	3660	3675	3690	3705	3720	3735	3750	3765	3780	3795	3810	3825	3840	3855	3870	5885	3900	3915	3930	3945	3960	3975	3990	4005	4020	4035	4050	4065	4080	4095	4110	4125	4140
	5/31/13 21:40	5/31/13 21:25	5/31/13 21:40	5/31/13 21:55	5/31/13 22:10	5/31/13 22:25	5/31/13 22:40	5/31/13 23:55	6/1/13 0:10	6/1/13 0:25	6/1/13 0:40	6/1/13 0:55	6/1/13 1:10	6/1/13 1:25	6/1/13 1:40	6/1/13 1:55	6/1/13 2:10	6/1/13 2:25	6/1/13 2:40	6/1/13 2:55	01:5 51/1/0	6/1/13 3:25	6/1/13 3:40	6/1/13 3:55	6/1/13 4:10	6/1/13 4:25	6/1/13 4:40	6/1/13 4:55	6/1/13 5:10	6/1/13 5:25	6/1/13 5:40	6/1/13 5:55	6/1/13 6:10	6/1/13 6:25	6/1/13 6:40	6/1/13 6:55	6/1/13 7:10	6/1/13 7:23

6. PROCESS DATA

					В	PILOT K	ILN ETUP						i N
	STEP#	TIME	LO ALA OFFS	W <u>DRYBL</u> M SET ET POIN	LB HIGH ALARM OFFSET	LOV ALAR OFFSI	WETB		A T R.H.	EMC	RECIP	<u>E SELECT</u> FAULT	
S. J.	1.1	10.0	10.	0 160.	10.0	10.0	163.	0 10.0	107.7	13.01	 A state of the second se		£.
1954	2	2.0	10.	0 165.) 10.0	10.0	159.	0 10.0	86.1	12.77	UP	LOAD	
	3	1.0	10	0 170.0	10.0	10.0	159.	10.0	76.3	12.83			
	11.12/14 11.12/14	7.0	10.	0 180.0	10.0	· · · · · · · · · · · · · · · · · · ·	158.	0 10.0	58.6	12.88	DOM	RLOAD	
		0.6		0 180.0	10.0	<u>10.0</u>	159.	10.0	60.1	12.85			1
기술	1997 - 2019 - 2019 1997 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 -	8 80		1800	10.0	10.0	145.	10.0	41.2	11.63		-14 per	
		80		180.0	10.0		145.0	10.0	41.2	9.80			÷
1 (j.	E g	18.0			10.0	10.0 10.0	133.0	10.0	28.8	9.74	1		
	·····································	0.0	10.0		10.0	Beel 10.0		1 10.0	100.0	8.01		n a shina	
동안	· · · · · · · · · · · · · · · · · · ·	0.0	10.0	0.0	10.0	10.0		10.0	100.0	0.00			
	12	0.0	10,0	0.0	10.0	10.0	0.0	10.0	100.0	0.00			
옷값	A 13	0.0	0,0	0.0	0.0	0.0	0.0	0.0	100.0	0.00			
	14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	8.00			
	Sec. 15	S 0.0	.0.0 julia	0.0	0.0	E.S. 0.0	0.0	0.0	100.0	0.00	영화공장	a zeroza in Sirada zero	Ŀ,
		TOTAL HOURS 70.0		MO DEG	ISTURE INJI 85.007Wetb	CTION ULB SP	<u>0N</u> 0 2.0	CF	GLEO	ecalculate			
	Klin 1	Kil	n2	<mark>і к</mark> і	n 3	Kili	n 4	Pilo	t Kiln	Humainy	Chamber		
Setu	o Steam	Setup	Steam	Setup	Steam	Setup	Steam	Setup	Steam	Setup	1 (ja)		
-			-	and the State of the Second	Show an other and the set			int of the local division of the local divis	1	the second se	THE PARTY NAMES OF TAXABLE PARTY.	COLDISK'M	100

Stat-Pak

Group Report

Start

Stop

6/4/2013 2:30:59

6/4/2013 3:22:24

The	Very	Big	Handmeter Company	
-----	------	-----	-------------------	--

Meter Number: 0001

%MC <

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

>

0

0

2

0

0

0

0

0

0.0

0.0

1.5

0.0

0.0

0.0

0.0

0.0

Kiln; Unit Ref. Supplier Ref. MCReadings Std. Dev. High Low Group Location Species SG10.3 136 3.1 25.9 6.0 0 Hemlock,West 0.45 Readings 0 0.0 0 0.0 3 2.2 17 12.5 18 13.2 25 18.4 18 13.2 13 9.6 22 16.2 5 3.7 5 3.7 5 3.7 2 1.5 0 0.0 0 0.0 0 0.0 1 0.7 2 0 0.0 0 0.0 0 0.0

Section: PROCESS DATA 28

Stat-Pak

Readings Report

The Very Big Handmeter Company

Meter Number: 00001

Unit Ref.

Start	6/4/2013	2:30:59
Stop	6/4/2013	3:22:24

Kiln:

Unit Kej.						Supplier Ref.										
	%MC 10.3	Readings 136	Std, Dev. 3.1	2	Hìgh 5.9	Low 6.0	Group 0	Locat	<i>ion. Speci</i> Hemle	<i>es</i> ock,West	SG 0.45					
Ν	o. %MC	C No.	%MC	No.	%MC	No.	%MC	No	%MC	No	0/MC					
	1 6.2	2 2	14.5	3	13.4	4	12.2	5	12.1	NO. 6	701/1C					
	7 7.1	8	16.3	9	8.8	10	9.0	11	16.0	12	11 1					
1	3 11.7	14	9.0	15	15.1	16	7.6	17	10.2	12	87					
1	9 11.8	20	9.7	21	7.3	22	9.5	23	11.9	24	14.9					
2	5 6.6	26	6.9	27	10.2	28	12.5	29	7.3	30	12.3					
3	1 11.2	32	7.6	33	11.9	34	11.1	35	9.1	36	12.0					
3	7 12.4	38	9.4	39	10.1	40	25.6	41	9.1	42	12.2					
4	3 10.5	44	11.4	45	11.4	46	11.8	47	12.4	48	25.9					
4	9 9.1	50	14.2	51	11.1	52	15.4	53	8.1	54	14.3					
5	5 11.8	56	13.5	57	9.5	58	13.3	59	11.2	60	19.6					
6	9.2	62	11.2	63	12.2	64	14.2	65	9.8	66	12.4					
6	7 13.5	68	11.5	69	9.8	70	6.2	71	8.5	72	8.8					
73	3 7.8	74	6.0	75	10.0	76	12.3	77	8.1	78	6.6					
79	7.4	80	7.8	81	9.2	82	14.9	83	9.2	84	10.1					
85	5 10.7	86	10.1	87	6.6	88	6.7	89	12.2	90	7.8					
91	8.0	92	6.5	93	10.9	94	12.6	95	9.1	96	9.5					
97	7.3	98	7.4	99	8.8	100	7.3	101	8.0	102	87					
103	7.7	104	8.3	105	9.8	106	8.5	107	11.5	108	7.3					
109	7.4	110	10.4	111	7.8	112	10.1	113	9.1	114	11.7					
115	10.0	116	9.7	117	8.1	118	7.7	119	9.8	120	112					
121	9.2	122	9.4	123	8.0	124	8.0	125	7.0	126	8.3					
127	7.1	128	9.4 ·	129	8.7	130	11.7	131	7.7	132	117					
133	9.0	134	8.8	135	10.8	136	11.5			102						

7. SITE PHOTOS

Section: SITE PHOTOS

Section: SITE PHOTOS

8. QUALITY ASSURANCE/QUALITY CONTROL

8.1 **ETI Quality Assurance/Quality Control Document**

Emission Technologies, Inc. continued success is an example of their pride taken in quality testing.

Analytical procedures and environmental measurement data are structured with a quality assurance program which equals or exceeds the minimum QA/QC requirements set forth by the U.S. Environmental Protection Agency (EPA) for each applicable method.

ETI executes the following topics through every test project to ensure valid measurement data:

- * Preventable Maintenance
- * Pre-test and Post-test Calibration
- * Blanks and Spiked Samples
- * Field System Checks
- **QA/QC** Matrix Tables *
- * Employment of QA/QC Officer

The following table is an activity matrix for Method 8 from the EPA Quality Assurance Handbook for Air Pollution Measurement Systems. By diligently following such activity matrix tables, Emission Technologies, Inc. reports justifiable, valid measurement data.

Apparatus	ACCEPTANCE LIMITS	FREQUENCY AND METHOD OF MEASUREMENT	ACTION IF REQUIREMENTS ARE NOT MET
Sampling Sampling probe with heating system	Capable of 100° C (212° F) exit air at flow rate of 20 L/min	Visually check; run heating system checkout	Repair, return to supplier, or reject
Probe nozzle	Stainless steel (316); sharp, tapered, leading edge (angle $\leq 30^{\circ}$); difference between measured ID's ≤ 0.1 mm (0.004 in.); no nicks, dents, or corrosion; uniquely identified (Meth. 5, Sec. 3.4.2)	Visually check before each test; use a micrometer to measure ID before field use after each repair	Reshape and sharpen, return to the supplier, or reject
Pitot tube	Type-S (Meth. 2, Sec. 3.1.2); attached to probe with impact (high pressure) opening plane even with or above nozzle entry plane	Calibrate according to Meth. 2, Sec. 3.1.2	Repair or return to supplier

TABLE 1.1 **ACTIVITY MATRIX FOR PROCUREMENT OF APPARATUS & SUPPLIES**

ADADATUS	A CCEDTANCE I IMITS	FREQUENCY AND METHOD	ACTION IF REQUIREMENTS	
Differential pressure gauge (manometer)	Criteria in Meth. 2, Sec. 3.1.2; agree within 5% of gauge- oil manometer used to calibrate	Check against gauge- oil manometer at a minimum of three points: $[0.64(0.025),$ 12.7(0.5), 25.4(1.0)] mm (in.) H ₂ 0	As above	
Vacuum gauge	Vacuum gauge $0.760 \text{ mm Hg range;}$ $\pm 25 \text{ mm (1 in.) Hg}$ Check against a mercury U-tube manometer upon receipt (15 in.) Hg			
Vacuum pumpCapable of maintaining a flow rate of 0.03 - $0.05 \text{ m}^3/ \min (1-1.7 \text{ ft}^3/ \min)$ for pump inlet vacuum of 380 mm (15 in.) Hg with pump out- let at 760 mm (29.92 in.) Hg; leak free at 380 mm (15 in.) Hg		Check upon receipt for leaks and capacity	Repair or return to supplier	
Orifice meter	$\Delta H @ of 46.74 \pm 6.35$ mm (1.84 ± 0.25 in.) (recommended)	Visually check upon receipt for damage; calibrate against wet test meter	Repair, if possible; otherwise, return to supplier	
Impingers	Standard stock glass; pressure drop across impingers not excessive	Visually check upon receipt; check pressure drop (Method 8, Sec. 3.7.1)	Return to supplier	
Cilter holder Leak free (Method 8, Sec. 3.7.1)		Visually check before use	As above	
Filters Glass fiber without organic binder designed to remove 99.95% (≤0.05% penetration) of 0.3-µm dioctyl phthalate smoke particles		Manufacture's guarantee that filters meet ASTM standard method D2986-71; observe under light for defects	Return to supplier and replace	

TABLE 1.1 (CONTINUED)

Apparatus	ACCEPTANCE LIMITS	FREQUENCY AND METHOD OF MEASUREMENT	ACTION IF REQUIREMENTS ARE NOT MET
Hydrogen peroxide	30% H ₂ O ₂ reagent grade or certified ACS	Upon receipt, check label for grade or certification	Replace or return to supplier
Potassium iodide	KI reagent grade or certified ACS	As above	As above
Thorin indicator	1-(o-arsonophenylazo)- 2-naphthol-3,6 disul- fonic acid disodium salt, reagent grade or certified ACS	Upon receipt, check label for grade or certification	As above
Barium perchlor- ate trihydrate solution	Ba(ClO ₄) ₂ -3H ₂ 0, - reagent grade or certified ACS	As above	As above
Sulfuric acid solution	H ₂ SO ₄ , 0.0100N <u>+</u> 0.0002N	Certified by manufacturer, or standardize against 0.0100N NaOH previously standardized against potassium acid phthalate (primary standard grade)	As above
NO _x Chemiluminescence Analyzer	NO _x to NO conversion efficiency $\ge 90\%$	Before each field test; Introduce a concentration of 40-60 ppm NO ₂ to the analyzer in direct cal mode; Calculate converter efficiency: $Eff_{NO_2} = \frac{C_{Dir}}{C_V} \times 100$	Repair

TABLE 1.1 (CONTINUED)

METHOD 5/202 CALCULATIONS

CLIENT: Sierra Vacifie
SITE LOCATION: Dry kilo
PROJECT #: 13-2476 Run #: HFK
Nomenclature:
$\begin{array}{llllllllllllllllllllllllllllllllllll$
K_p = pitot tube constant = 85.49 ft/sec $\sqrt{\frac{(lb/lb - mole)(inches Hg)}{(^{o}R)(inches H_2O)}}$
M_d = molecular weight of stack gas, dry basis, lb./lbmole M_w = molecular weight of stack gas, wet basis, lb./lbmole = $M_d (1 - B_{ws}) + 18(B_{ws})$
 ΔH = differential meter pressure, inches H₂O %CO₂ = percent by volume of carbon dioxide in stack gas %N₂ = percent by volume of nitrogen in stack gas %O₂ = percent by volume of oxygen in stack gas P_{bar} = barometric pressure, inches Hg
$\sqrt{\Delta P}_{avg}$ = average velocity head of stack gas, $\sqrt{\text{inches H}_2\text{O}}$ P_s = absolute stack gas pressure, inches Hg P_{static} = static pressure of the stack, inches H ₂ O P_{std} = standard absolute pressure, 29.92 inches Hg O_{res} = stack flow rate decfm
θ = sample time, minutes or hours T_m = meter temperature, °F T_s = average stack temperature, °F T_{std} = standard absolute temperature, 528°R
$T_{s(avg)}$ = Average absolute stack temperature, ${}^{o}R = 460 + T_{s}$ V_{nstd} = corrected meter volume, dscf V_{s} = average stack gas velocity, ft./sec. V_{lc} = volume of water gain in the impingers, ml Y = dry gas meter calibration factor 7000 = conversion from grains to pounds; divide by
$M_{\rm FH}$ = weight of front half particulate matter, g

 M_{p_1} = mass of probe& nozzle rinse, g

$$M_F = mass of filter, g$$

 M_a = mass of acetone reagent blank, g

Mb = mass of field total cpm blank (shall not exceed 2 mg), g

0.0154 = conversion of mg to grains (gr)

 M_n = weight of particulate in mg

 $C_s \approx$ concentration in pounds per dry standard cubic feet (lb/dscf)

 E_1 = emission rate in pounds/hour (lb/hr)

 E_2 = emission rate in pounds/thousand board feet (lb/Mbf)

Lf = lumber feed in board feet = bf processed for the test

Volume of metered sample gas at standard conditions:

$$P_{\text{meter}} = P_{\text{bar}} + \frac{\Delta H}{13.6} = \frac{29.65}{13.6} + \frac{0.6555}{13.6} = \frac{29.698199}{13.6}$$
 inches Hg

$$V_{rn(std)} = \frac{(V_m) \times (T_{std}) \times (P_{meter}) \times (Y)}{(T_m + 460) \times (P_{std})}$$

$$V_{m(std)} = \frac{(1973.976) \times (528) \times (29.698199) \times (0.999)}{(-74.3-460) \times (29.92)} = 1846.1123/56 \text{ dscf}$$

Moisture Content:

$$V_{w(std)} = (0.04715 \text{ ft}^3/\text{gram water}) \times (V_{lc})$$
 1 gram water = 1 ml water

$$V_{w(std)} = (0.04715) \times (12110) = 99,4860 \text{ scf}$$

$$B_{ws} = \frac{V_{w(std)}}{\left(V_{w(std)} + V_{m(std)}\right)}$$

$$B_{ws} = \frac{99.48650}{(-99.48650+1846.1123150)} = 0.55113$$
 water vapor fraction

Saturated Stack Moisture Content:

$$e'' = 6.08764 \times 10^{-6} \times tw^3 - 1.00431 \times 10^{-3} \times tw^2 + 0.0756026 \times tw - 1.69343$$

 $e'' = 6.08764 \times 10^{-6} \times (104.1)^{3} - 1.00431 \times 10^{-3} \times (104.1)^{2} + 0.0756026 \times (104.1) - 1.69343 = 2.16032326$

$$B_{ws} = \frac{\left[e^{u} - \left(\frac{(P_{bar} - e^{u}) \times (t_{d} - t_{w})}{(2800 - (1.3 \times t_{w}))}\right)\right]}{P_{s}}$$

$$B_{ws} = \frac{\left[2.16082326 - \left(\frac{(29.66 - 2.16082326) \times (104.1 - 104.1)}{(2800 - (1.3 \times))}\right)\right]}{(26.65)} = 0.072875$$

*Use B_{ws} that is the smallest for proceeding calculations.

Molecular Weight:

$$\frac{D_{TY}}{N_{2}} = 100\% - \%O_{2} - \%CO_{2}$$

$$\%N_{2} = 100 - (20.\%) - (0.1) = 14 \%N_{2}$$

$$M_{d} = (0.44 \times \%CO_{2}) + (0.32 \times \%O_{2}) + (0.28 \times \%N_{2})$$

$$M_{d} = (0.44 \times (0.44 \times (0.32 \times (0.28 \times (0.2$$

Wet:

$$M_w = M_d \times (1 - B_{ws}) + (18 \times B_{ws})$$

$$M_{w} = (28.95^{2}) \times (1 - 5.05 / 13) + (18 \times 5.05 / 13) = 28.297 / 4 / 16 / 16 - mole$$

Average Velocity of Stack Gas:

$$V_{s} = K_{p} \times C_{p} \times \sqrt{\Delta P_{avg}} \times \sqrt{\frac{T_{s(avg)}}{M_{w} \times P_{s}}} \qquad P_{s} = P_{bar} + \frac{P_{static}}{13.6}$$

$$P_{s} = (\underline{29.65}) + \frac{(\underline{0})}{13.6} = \underline{25.65}$$

$$V_{s} = 85.49 \times \underline{0.644} \times \underline{0.1044} \times \sqrt{\frac{(104.4 + 460)}{2\underline{6}.29\underline{7}\underline{14}} \times \underline{25.65}} = \underline{6.165} \text{ ft/sec}$$

Volume Flow Rate:

$$Q_{std} = 60 \times (1 - B_{ws}) \times V_s \times A_d \times \frac{T_{std} \times P_s}{T_s (avg) \times P_{std}}$$

$$Q_{std} = 60 \times (1 - D_t \underline{DS113}) \times \underline{b_s} \underline{bS04} \times \underline{3353675} \times \frac{528 \times 251.65}{(104.1 + 460)} \times 29.92 = \underline{255, b} \underline{b} \underline{b} dscfm$$

Percent Isokinetic:

$$l = \frac{0.0945 \times (T_s + 460) \times V_{m(std)}}{P_s \times V_s \times A_n \times \theta_{min} \times (1 - B_{ws})}$$

$$I = \frac{0.0945 \times (104.1 + 460) \times (1846.1123156)}{29.65 \times 6.16564} = \frac{602.138}{200134190913} \times \frac{4140}{24140} \times (1 - 0.0728) = \frac{602.138}{602.138} \%$$

Particulate (front half) Calculations:

Blank Correction:

$$M_{FH} = M_{pn} + M_F - M_a = (0.0027) + (0.0007) - (0.000) = 0.0034$$

as gr/dscf:

$$C_{s} = \frac{0.0154 \times M_{n}}{V_{m(std)}} = \frac{0.0154 \times (3.4)}{(1\%46.1123156)} = \frac{0.000028362}{0.000028362} gr / dscf$$

as lb/hour:

-

$$E_{1} = \frac{(E_{1} \text{ as gr/dscf}) \times Q_{\text{std}} \times 60}{7000} = \frac{(0.00028362) \times (255.6\%) \times 60}{7000} = \underline{a.000263} + \frac{1000}{2} + \frac{1000$$

as lb/Mbf:

$$E_{2} = \frac{E_{1} \times \theta_{hr} \times 1000}{Lf} = \frac{(0.000062593) \times (-69) \times 1000}{(2267)} = 0.001914 \text{ lb/Mbf}$$

Particulate (back half) Calculations:

Blank Correction:

$$M_{cpm} = M_{i} + M_{o} - M_{b} = (0.0121) + (0.0220) - (0.002) = 0.0321 g$$

as gr/dscf:

$$C_{s} = \frac{0.0154 \times M_{n}}{V_{m(std)}} = \frac{0.0154 \times (32.1)}{(15446.1123156)} = \frac{0.00026772}{0.00026772} \text{ gr/dscf}$$

as lb/hour:

$$C_{s} = \frac{(C_{s} \text{ as } \text{gr/dscf}) \times Q_{std} \times 60}{7000} = \frac{(0.00026477) \times (258.405675) \times 60}{7000} = 0.000593282 \text{ lb/hm}}$$

as lb/Mbf:

~

$$E_{2} = \frac{E_{1} \times \theta_{hr} \times 1000}{Lf} = \frac{(0.000593782) \times (.000)}{(.22672)} = \frac{0.000073782}{0.0000773} \text{ lb/Mbf}$$

Å.

٤

Section: Quality Assurance/Quality Control 54 HP-1 Post cal 613-13

Quelly - Service - Roboldy

M<u>.</u>

(International) MAR

(100"A

T_{ink} = Acords articletion parks. (N. 1946); N. 1646); N. = Acords Netherbord Collection Collection

* COM calification tector

 $\Gamma = \frac{V_{eq}}{P_{eq}}$

Ŧ

Section: Quality Assurance/Quality Control 55

Meter Box Temperature Read-out Checks Date: 9/5/2012

Calibrator: DJW

Read out ID	Meter Box #	Set Temp.	Box Temp.	Set Temp.	Box Temp.	Set Temp.	Box Temp.	% Diff.	% Diff.	% Diff.
Main #1	HF-A	250	251	125	126	68	68	-0.19	-0.25	0.00
Main #2	HF-A	250	252	125	125	68	68	-0.38	0.00	0.00
Main #3	HF-A	250	253	125	126	68	69	-0.57	-0.25	-0.29
Main #4	HF-A	250	252	125	124	68	68	-0.38	0.25	0.00
Main #5	HF-A	250	253	125	126	68	68	-0.57	-0.25	0.00
Probe	HF-A	250	252	125	126	68	69	-0.38	-0.25	-0.29
Main #1	HF-I	250	252	125	126	68	69	-0.38	-0.25	-0.29
Main #2	HF-I	250	252	125	125	68	69	-0.38	0.00	-0.29
Main #3	HF-I	250	252	125	125	68	68	-0.38	0.00	0.00
Main #4	HF-I	250	252	125	125	68	66	-0.38	0.00	0.59
Probe	HF-I	250	249	125	124	68	68	0.19	0.25	0.00
Filter	HF-I	250	250	125	125	68	67	0.00	0.00	0.29
Main #1	HF-M	250	252	125	125	68	67	-0.38	0.00	0.29
Main #2	HE-M	250	253	125	125	68	69	-0.57	0.00	-0.29
Main #3	HF-M	250	253	125	125	68	68	-0.57	0.00	0.00
Main #4	HF-M	250	251	125	124	68	69	-0.19	0.25	-0.29
Main #5	HF-M	250	253	125	126	68	68	-0.57	-0.25	0.00
Probe	HE-M	250	251	125	126	68	70	-0.19	-0.25	-0.59
Filter	HF-M	250	252	125	126	68	69	-0.38	-0.25	-0.29
Main #1	HE-E	250	251	125	126	68	68	-0.19	-0.25	0.00
Main #2	HE-E	250	251	125	126	68	70	-0.19	-0.25	-0.59
Main #3	HF-E	250	251	125	126	68	69	-0.19	-0.25	-0.29
Main #4	HE-E	250	251	125	126	68	69	-0.19	-0.25	-0.29
Main #5	HELE	250	251	125	126	68	68	-0.19	-0.25	0.00
Probe	HELE	250	251	125	126	68	68	_0.10	40.25	0.00
Filter	HE-E	250	251	125	126	68	69	-0.19	-0.25	-0.29
Main #1	HE R	250	240	125	126	69	72	0.10	.0.25	-1.17
Main #2	HE R	250	249	125	120	60	72	0.19	-0.25	-1.17
Main #2	HE-B	250	249	125	120	68	70	0.19	-0.25	-0.35
Main #4	HE-B	250	243	125	126	68	70	0.19	-0.30	-0.55
Main #5	HE-B	250	243	125	126	68	60	_0.19	-0.25	-0.35
Prohe	HE R	250	251	125	120	60	60	-0.15	-0.20	-0.29
Filter	HE-B	250	250	125	127	68	70	0.00	0.00	-0.29
Main #1	HED	250	250	115	124	60		1.24	0.00	0.00
Main #2	HE D	250	257	125	124	60	65	1.54	0.25	0.00
Main #2	HE-D	250	250	125	124	60	62	-1.33	0.25	1.76
Main #4	HE-D	250	257	125	124	60	64	-0.06	0.25	1.17
Main #4	HED	250	255	125	122	60	64	-1.15	0.75	1.17
Main #5	HED	250	250	125	122	60	40	-1.15	0.75	0.99
Probe	HE-D	250	250	125	125	68	66	-0.38	0.00	0.50
Filter	HE-D	250	252	125	125	60	63	-0.30	0.00	1/7
Main #1	HEL	250	252	125	125	68	66	-0.30	-0.25	0.50
Main #2	HEL	250	251	125	120	68	66	-0.19	-0.25	0.59
Main #2	HEL	250	251	125	127	68	66	-0.19	-0.50	0.59
Main #3	HEL	250	251	125	127	60	66	-0.19	-0.30	0.59
Prohe	HE I	250	201	125	120	60	00	-0.19	10.25	0.09
Filter	HEL	250	251	125	125	60	66	-0.19	0.00	0.50
Main #1	16.2 16000	250	251	125	125	60	66	0.20	0.00	0.50
Main #1	15-3-15980	250	252	125	125	68	66	-0.38	-0.00	0.59
Main #2	15-3-15000	250	252	125	120	60	66	-0.30	-0.25	0.59
Main #2	15.2.45000	250	202	125	120	60	67	-0.56	-0.25	0.39
Decks	15.2.45000	250	200	125	120	60	67	-0.37	-0.25	0.29
Filter	15-3-15980	250	252	125	120	60	66	-0.38	-0.25	0.59
11000	0-3-13300	230	232	123	120	00	00	-0.30	-0.25	0.35

Date:	9/5/2012		Operator:	Dperator: DJW Ref. ID#:				ompany	
						S/N:	90832009		
Therm.	Ref. Set	Point in De	egrees C	Thermo	couple Re	sponse	Di	fference in	%
ID#	Ice	Ambient	Boiling	I	n Degrees	С	Ice	Ambient	Boiling
3361	1	20	103	0	20	101	0.365	0.000	0.532
P-537	1	20	102	1	19	102	0.000	0.341	0.000
ETI 73	1	20	101	0	20	100	0.365	0.000	0.267
PT-1	1	20	101	0	19	101	0.365	0.341	0.000
3296	1	20	98	0	20	98	0.365	0.000	0.000
3311	1	19	98	0	20	97	0.365	-0.342	0.270
3314	1	20	104	1	20	101	0.000	0.000	0.796
3353	1	19	98	0	20	98	0.365	-0.342	0.000
PT-2	1	20	102	1	20	100	0.000	0.000	0.533
ETI60B	1	20	99	1	20	100	0.000	0.000	-0.269
ETI40A	1	19	98	0	20	100	0.365	-0.342	-0.539
P-441	1	20	100	1	20	100	0.000	0.000	0.000
HF-E in	1	21	103	1	20	101	0.000	0.340	0.532
HF-B in	1	19	100	1	18	101	0.000	0.342	-0.268
HF-B out	1	19	100	2	18	100	-0.365	0.342	0.000
HF-D in	1	21	100	1	20	100	0.000	0.340	0.000
HF-D out	1	20	103	1	20	101	0.000	0.000	0.532
HF-E out	1	21	103	1	20	101	0.000	0.340	0.532
HF-Min	1	20	100	1	20	101	0.000	0.000	-0.268
HF-M out	1	20	100	1	21	100	0.000	-0.341	0.000
HF-I in	1	18	100	0	18	99	0.365	0.000	0.268
HF-I out	1	18	100	0	19	100	0.365	-0.344	0.000

Themocouple Calibrations

Date:	9/5/2012		Operator:DJWRef. ID#:			Control Co	ompany		
						S/N:	90832009		
Therm.	Ref. Set	Point in De	egrees C	Thermocouple Response			Difference in %		
ID #	Ice	Ambient	Boiling	I	n Degrees	С	Ice	Ambient	Boiling
3363	4	20	101	5	20	100	-0.36	0.00	0.27
3464	5	20	101	5	20	100	0.00	0.00	0.27
3226	4	20	100	5	20	100	-0.36	0.00	0.00
3482	5	20	100	5	20	100	0.00	0.00	0.00
3468	4	20	101	5	20	100	-0.36	0.00	0.27
3312	4	20	101	4	20	100	0.00	0.00	0.27
3377	4	20	100	5	20	100	-0.36	0.00	0.00
3474	4	20	100	3	20	100	0.36	0.00	0.00
3375	2	20	100	3	20	100	-0.36	0.00	0.00
3264	4	20	100	4	20	100	0.00	0.00	0.00
3357	5	20	100	4	19	100	0.36	0.34	0.00
3376	4	20	100	3	20	100	0.36	0.00	0.00
3074	3	20	100	3	22	100	0.00	-0.68	0.00
3122	5	21	100	5	20	100	0.00	0.34	0.00
3360	4	20	101	4	19	100	0.00	0.34	0.27
3081	5	20	100	5	20	100	0.00	0.00	0.00
3364	4	20	100	5	20	100	-0.36	0.00	0.00
3265	5	20	99	4	19	100	0.36	0.34	-0.27
3351	4	20	100	5	20	100	-0.36	0.00	0.00
3352	4	20	100	5	19	100	-0.36	0.34	0.00
3355	4	20	101	5	19	100	-0.36	0.34	0.27
3354	5	20	100	5	19	100	0.00	0.34	0.00
3069	4	20	100	5	19	100	-0.36	0.34	0.00
3358	3	20	101	4	19	100	-0.36	0.34	0.27
3436	3	20	100	4	20	100	-0.36	0.00	0.00
2032	3	19	101	2	20	99	0.36	-0.34	0.53
PR-2	2	20	100	1	21	99	0.36	-0.34	0.27
ETI 16	2	20	101	2	20	99	0.00	0.00	0.53
ETI 14	2	20	101	2	19	99	0.00	0.34	0.53
ETI 3	2	20	100	2	20	99	0.00	0.00	0.27
ETI 2	1	20	101	2	20	99	-0.36	0.00	0.53
ETI 12	2	20	99	2	19	99	0.00	0.34	0.00
ETI 4	2	20	100	2	19	99	0.00	0.34	0.27
ETI 15	2	20	99	2	19	99	0.00	0.34	0.00

S-Type Pitot Tube Calibration Sheet

Pitot I. D.:	PR-2
Calibration Date:	1/7/2013
Calibrated By:	David Wagner
Pitot C _p =	0.84
Tube Diameter (D _t)=	0.375
P _a =	0.470
P _b =	0.470
P _t =	0.940
$P_a + P_b = P_t$	(See Figure 2-2 (b))
Is 1.05D _t <= P _{s or b} <=	1.5D _t

Transverse tube (See Figure 2-3 (a) & (b)

α1	α2	Limit	Pass
0	0	഻ഀ	YES

Longitudinal Tube (See Figures 2-3 (c), (d) & (e)

β1	β2	Limit	Pass
0	1	഻	YES

Longitudinal Tube (See Figures 2-3 (f)

z - angle	Z	Limit	Pass
0	0.000	<= 0.125"	YES
			,

Longitudinal Tube (See Figures 2-3 (g)

w - angle	w	Limit	Pass
1	0.016	<= 0.03125"	YES

Comments:

4 point Nozzle Calibration Sheet

Emission Technologies, Inc. Nozzle Calibration

30-13 ζ Date: Operator: Nozzle Type: 455 Nozzle ID: 0.418 4 Ambient Temperature: 60 3 2 1 Measured Nozzle Diameters: 419 D1 = O; D2= 18 0.4 D3= 0. D4≃ Average: 418 Ô.

4 point Nozzle Calibration Sheet

8.7 Balance and Weights Calibrations/Certifications

The balances listed below have been serviced on: Clearing 24, 2013 This is to certify that the test weights used during calibration are traceable to the National Institute of Standards and Technology and <u>Compliant</u> with Mfg.specifications and ISO 9001:2008.

Standards are ASTM-CLASS #1.	#1.Analytical	#2.Precision	#3.Precision
The identification number of test weights:	Set # 1.	Set # 2.	Set # 3.
The calibration date of weights used:	2-14-2012	2-14-2012	2-14-2912
Next calibration due:	2-14-2014	2-14-2014	2-14-2014
N.I.S.T. traceability test number is:	20120345	20120346	20120347
Weight Description:	10mg-100g+	100g-5kg+	1kg-10kg+

<u>Preventive maintenance consists of</u>: a thorough functional check, cleaning, lubrication, corner load, calibration, linearity uncertainty and hysterisis checks and adjustments to original *Mfg. specifications*.

Four or more of the above standards were used as references for linearity and calibration.

<u>Notice</u> all balances are serviced under lab ambient conditions. Manufacturer's tolerances are for new equipment used under ideal conditions. Your results may reflect the age of the equipment and the environmental conditions

environmental conc	litions.	Pre.	Post.			Wgt.
Model.	Serial#.	Adj.Reading	Adj.Reading:	Liniarity:	Readability:	Set #:
1. <u>AE200.</u> <u>F</u>	EB1252	+-100.0012	+-100000	+- 0, 2me	+Oliver	#/.
2. 100g dat	62705	+-100,0001	.+ <i>M</i>	+- 1/2.	+- 14.	# 12.
3		. +	. +-	+	+	#
4		. +	. +-	+	+-	#
5		. +-	. +-	+-	+-	#
6		. +-	+-	+-	+-	#
7		.+-	. +-	+-	+-	" <u> </u>
8		. +-	. +-	+-	+-	H
9		. +.	. +-	+-	+- ·	"
10		.+	.+	+	+	# <u></u> :
Comments.	/		_			
Ilacleul	Contra	Page0	f /			
Representa	tive			Custo	mer	
PO Box 2448	Oak Harbor.	WA 98277-644	8 Pb 360-3	02-0960 / F	ax 360-675	-4116

201 Wolf Drive * P.O. Box 87 * Therefare, NJ 08086-0087 * Phone:856-688-1600 * Fax: 858-686-1601 * www.treamner.com * e-mail: treemner@treemner.com Page 1 of 1 Pages

Weight

Emission T	echno	ologies
15609 D Pe	terso	n Road
Burlington,	WA	98233

Order Number CC Certificate Number 722059 Date of Calibration 24-MAY-2013 Calibration Due Date 24-MAY-2014

Description of Weights: ASTM Weight

Material	Assumed Density at 20°C	Range
Stainless Steel	8.03 g/cm3	3g

Tested with Reference Standards Traceable to the National Institute of Standards & Technology through NIST Test Number 822-275872-11.

We certify that the weights listed are calibrated to ASTM E617-97 Class 1 tolerances.

The calibration of these weights is based on apparent mass vs material of density 8.0g/cm3.

Nominal	Serial	Correction *	Tolerance	Uncertainty
Mass Value	Number		(+ or -)	(+ or -)
3 a	1000073386	+0.0104 mg	0.034 mor	0.0110 mg

Correction is defined as the difference between the mass value of a veight and its nominal value. A positive correction indicates that the mass value is greater than the nominal value by the amount of the correction.

seph Moran, Metrology Manager, Approved Signatory

201 Wolf Drive • P.O. Box 87 • Thorofare, NJ 08066-0067 • Phone:856-686-1610 • Fax: 856-686-1601 • www.traamnar.com • e-mail: troemner@troemner.cc Page 1 of 1 Pages

Weight

Emission Technologies	
15609 D Peterson Road	
Burlington, WA 98233	

Order Number CC Certificate Number 722059A Date of Calibration 24-MAY-2013 Calibration Due Date 24-MAY-2014

Description of Weights: ASTM Weight

Material	Assumed Density at 20°C	Range
Stainless Steel	7.95 g/cm3	500mg

Tested with Reference Standards Traceable to the National Institute of Standards & Technology through NIST Test Number 822-275872-11.

We certify that the weights listed are calibrated to ASTM E617-97 Class 1 tolerances.

The calibration of these weights is based on apparent mass vs material of density 8.0g/cm3.

Nominal	Serial	Correction *	Tolerance	Uncertainty
Mass Value	Number		(+ or -)	(+ or -)
500 mg	1000073387	+0.0039 mg	0.010 mg	0.0032 mg

* Correction is defined as the difference between the mass value of a weight and its nominal value. A positive correction indicates that the mass value is greater than the nominal value by the amount of the correction.

Joseph Moran, Metrology Manager, Approved Signatory

8.8 Chemical Certificates of Analysis

CERTIFICATE OF ANALYSIS WATER GLASS PURIFIED, GLASS DISTILLED, HPLC GRADE

Lot # PB003806WTR QC # 1:03316 Date of Manufacture: 04-11-11 Recommended Retest Date: Three Years from Date of Manufacture Main Catalog #: 23200HPLC, zh23200HPLC

Gradient Elution: A 40 ml volume of water is passed through a column for 20 minutes and eluted with a water to Acetonitrile gradient of 5% per minute.

Spec	ification	Result
0.1 p	pb max.	<0.1 ppb
To P	ass Test	Pass
1 00	m max.	<0.1 ppm
nm 0.01	mey	0.009
1001	max.	0.009
) nm 0.01	max.	<0.001
) nm 0.01	max.	<0.001
) nm 0.00	5 max.	<0.001
) nm 0.00	5 max.	<0.001
Per	Lot	Pass
	Spect 0.1 p To P 1 pp nm 0.01 nm 0.00 nm 0.00	Specification 0.1 ppb max. To Pass Test 1 ppm max. nm 0.01 max. nm 0.005 max. nm 0.005 max. Per Lot Even: Water Divide

Purified and distilled in glass - Suitable for: Critical & Routine HPLC Analysis

Approved by: P. McGowan, Quality Assurance + Technical Support

Disclaimer: For Industrial, Pharmaceutical, Flavor & Fragrance or Lab Use. Not intended for use as an active substance in Food or Drug. Not to be considered a Medical Device. Not intended for use as a Disinfectant as defined by the EPA. The appropriate use of this product is the sole responsibility of the user. (Rev. # disclaimer only, rev 3.5 11/06 EF)

1-25-13 SDIU

CERTIFICATE OF ANALYSIS ACETONE

GLASS PURIFIED, GLASS DISTILLED HRGC/HPLC - TRACE GRADE

LOT # PB004807ACE -

Q.C.# 1204264 Date of Manufacture: 05-04-12

Expiration Date: Three Years from Date of Manufacture*

Main Catalog #: 329000DIS

Alt. Catalog #: 32900HPLC, 329000ACS

Gas Chromatographic Analysis of this product using an electron capture detector shows no peaks with a response greater than 10 ppt as Heptachior Epoxide.

Product Specifications	Limits	Results
GC-ECD	10ppt max	<1ppt
UV Absorbance @ 330 nm	1.000 max	0.68
340 nm	0.100 max	0.05
350 nm	0.020 max	<0.001
375 nm	0.010 max	<0.001
400 nm	0.005 max	<0.001
Assay, (GC), min	99.9%	99.98%
Residue After Evaporation	3 ppm max	<0.1 ppm
Boiling Range	56-57C	56.1C - 57C
Color (APHA), max	10	<5
Fluorescence Background	I ppb	<1ppb
Appearance	Clear	Clear
Solubility in Water	To Pass Test	Pass
Titrable Acid, max	0.0005 meg/g	0.0001 meq/g
Titrable Base, max	0.0006 meg/g	0.00006 meq/g
Aldehyde (as HCHO), max	0.002%	<0.002%
IPA, max	0.05%	<0.005%
Methanol, max	0.05%	0.01%
Substances Red. KMnO4	To Pass Test	Pass
Water, max	0.5%	0.3%
Specific Gravity @ 25C	0.7890, max.	0.7883
Liquid Chromatography (ACS)	To Pass Test(s)	
Absorbance (UV)		Pass
Gradient Elution		Pass
Gradient Analysis		Pass
Identification (IR/GC)	To Conform	Pass
Filtered to 0.2 um max	Per Lot	Pass

Purified, dried and distilled in ginss – Suitable for: High Resolution Gas Chromatograthy, Mass Spectrozcopy, Trace Organic Analysis, Critical and Routine HPLC. Meets all other ACS Specifications for General Use Reagent, Spectrophotometric Analysis and General Use HPLC.

Approved by: P. McGowan, Quality Assurance + Technical Support

Dischaimer, For Industrial, Pharmaceutical, Flavor & Fragmace or Lab Use. Not intended for use as an active substance in Food or Drug. Not to be considered a Medical Device. Not intended for use as a Disinfectant as defined by the EPA. The appropriate use of this product is the sole responsibility of the user. (Rev. # disclaimer only, rev 3.5 11/06 EF)

Pharmoo Products Inc: 58 Vale Road, Brooklield, CT 06804	1.800 243,5360	Fax: 1.203.740.3481
Apper Alcohol & Chemical Co: 1101 Shelby Drive, Shelbyville, KY 40065	1.800.456.1017	www.pharmcoaaper.com

CERTIFICATE OF ANALYSIS **n-HEXANE, 60% min.** GLASS PURIFIED, GLASS DISTILLED HRGC/HPLC – TRACE GRADE

Lot # PL001277HEX60 QC # A0471 Date of Manufacture: 3/23/07 Main Catalog No: 359060DIS

GC Analysis of this product using an electron capture detector shows no peaks with a response greater than 10ppt as Heptachlor Epoxide.

PRODUCT SPECIFICATIONS	LIMITS	LOT ANALYSIS
GC-ECD	10ppt max	0.8ppt
UV Absorbance @ 195nm	1.00 max	0.8130
210nm	0.30 max	0.2086
220nm	0.20 max	0.0590
230nm	0.10 max	0.0167
240nm	0.04 max	0.0017
250nm	0.02 max	0.0000
280nm	0.01 max	0.0000
400nm	0.01 max	0.0000
Assay, (GC), n-Hexane	60.0% min	61%
Assay, (GC), C6 (Hexanes)	99.0% min	99.98%
Residue After Evaporation	10 ppm max	1 ppm
Water, max	0.01%	0.003%
Thiophene	To Pass	Pass
Color (APHA)	10 max	<5
Fluorescence Background (as Quinine Sulfate)	lppb	<1ppb
Water Soluble Titrable Acid	0.0003meq/g	0.0002meq/g
Sulfur (as S)	0.005% max	<0.001%
LC Suitability	To Pass Test	Pass
Identification (IR/GC)	To Conform	Pass
	Form n-Hexane 60%-Di	stilled, #101, Rev. 2.0, 11/06, Ef

Purified, dried and distilled in glass – Suitable for: Hig1 Resolution Gas Chromatography, Mass Spectroscopy, Trace Organic Analysis, Critical and Routine HPLC. Meets all other ACS Specifications for General Use Reagent, Spectrophotometric Analysis and General Use HPLC.

Approved by: P. McGowan, Laboratory Manager

Dischaimer: For Industrial, Phanaaceutical, Flavor & Fragratee or Lab Use. Not intended for use as an active substance in Food or Drug. Not to be considered a Medical Eevice. Not intended for use as a Disinfectant as defined by the EPA. The appropriate use of this product is the sole responsibility of the user. (Rev, # disclaimer only, rev 3.3 10/05/05 PD)

As ISO 90023660 Cerified Company Apper Alcohol & Chemical Co., Inc. 100 Isaac Stelby Drive, Shelbyvile, KY 40065 3:900-456-1017 www.aspars.com

END OF TEST REPORT